
Abstract12

This paper describes a dialog management architecture for car
telematics systems. The system handles the user's spontaneous
utterances and the variable communication conditions between
the in-car client and the server. The communication is based on
VoiceXML/HTTP, and the development of the server-side
application is based on layered extensions of VoiceXML, called
DialogXML and ScenarioXML. These extensions provide
support for state-and-transition type programming, enable access
to dynamic external databases, and share commonly used dialogs
via templates. The client system includes a set of small grammars
and lexicons for various tasks; only relevant grammars and
lexicons are activated under the control of the dialog manager.
The server-side applications are integrated via an abstract
interface, and the client system may include compact versions of
the same applications. The VoiceXML interpreter can switch
between applications on both sides intelligently. This helps to
reduce bandwidth utilization, and allows the system to continue
even if the communication channel is lost.

1. Introduction
Spoken dialog management in car telematics is a challenging
target for the speech and language research. The various
challenges include efficient creation of dialogs, accurate analysis
of the user's utterance, and managing the cooperation between
the client and the server. Because of the strict limitation on
computational resources and communication bandwidth, the
client and the server systems need to divide their tasks in an
appropriate manner. VoiceXML[1] provides a basis for design of
the system architecture, in which the server system sends the
minimal information necessary to guide the dialog, and the client
system sends the minimal information necessary to describe the
user's response.

In [2], Carpenter, et al. proposed a framework for server-side
dialog management. Since VoiceXML does not support intrinsic
functions for states and transitions, their framework assumes that
the dialog manager[3] controls the entire flow of the dialog, and
sends small segments of VoiceXML to the client. However, in
mobile applications such as car telematics systems, the
communication channel is narrow and unstable. Therefore, we

1 Currently at Central Research Laboratory, Hitachi, Ltd.
2 Currently at Software Engineering Institute, CMU

prefer to send a VoiceXML document including several turns of
the dialog at once. In previous work, we have proposed
extensions to VoiceXML, called DialogXML and
ScenarioXML[4]. DialogXML realizes higher level control of
the dialog flow using states and transitions, and ScenarioXML
realizes systematic ways to access external databases. We
adopted those extensions in the dialog manager. The
ScenarioXML written by the developer is compiled into
VoiceXML documents corresponding to a large portion of the
dialog. In the server system, as in [2] and [4], Java Server Pages
(JSP)[5] are used by the dialog manager to create VoiceXML
documents dynamically, so the application can easily be
connected to external databases.

Another challenge of the in-vehicle dialog system is the
analysis of the user's utterance. In a system that has rich
computational and/or communication resources, such as a
telephony gateway, a large-vocabulary continuous speech
recognition (LVCSR) system (e.g., SPHINX[6]) and a large
scale natural language processing (NLP) system (e.g.,
KANTOO[7]) can be integrated. However, in a client system
with limited resources, analysis should be simplified. Our system
uses a simple speech recognizer with a regular grammar, and a
set of small grammars and lexicons play the role of the NLP
system. A (grammar, lexicon) pair defines a task, and the dialog
manager can activate one or more tasks by enumerating the
names of those pairs. Such grammars and lexicons can be created
by hand, or derived from corpora that include sentences from the
specified task. In this scheme, the developer can make a robust
dialog system easily.

The third challenge addressed by our system is task switching
between the client and the server systems. Sometimes the in-
vehicle client loses the connection to the server and keeps
working as a stand-alone system. In such a case, the client system
continues the dialog in a reduced way and provides limited
information to the user. Then, after the connection is recovered,
the client and the server negotiate to establish a new context, and
start the next task.

2. System Architecture
Figure 1 shows the architecture of the car telematics system
described in this paper. In the client system, VoiceXML
Interpreter interacts with the user via automatic speech
recognition (ASR) and text-to-speech (TTS) interfaces. We use
the VoiceXML Interpreter developed by Hitachi CRL[8]; it

ROBUST DIALOG MANAGEMENT ARCHITECTURE USING
VOICEXML FOR CAR TELEMATICS SYSTEMS

Yasunari Obuchi1, Eric Nyberg, Teruko Mitamura, Michael Duggan2, and Scott Judy
Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{ obuchi, ehn, teruko, md5i, scottj} @cs.cmu.edu

Nobuo Hataoka
Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo 185-8601, Japan

hataoka@crl.hitachi.co.jp

supports most of the functions defined in VoiceXML 2.0[1], and
also includes an additional input/output channel to allow
asynchronous communication with an internal application such
as a GPS navigator. Therefore, although the system usually
communicates by sending HTTP requests to the Dialog Manager
(DM) and receiving VoiceXML documents in return, it can also
work in standalone mode by utilizing internal applications. For
example, an asynchronous signal from a GPS module can
interrupt an ongoing dialog (e.g., a query about restaurant
information) when the vehicle approaches an intersection where
a turn is required. Grammars and lexicons are stored in the client
and the server, and the DM specifies the location of the grammar
and the lexicon to use, simply by including a specific URI in the
VoiceXML document. If a server-side grammar and lexicon are
needed, they are sent with the VoiceXML document. On the
server side, the DM plays a central role and controls the dialog
according to pre-defined dialog scenarios. In order to create a
VoiceXML dialog including dynamic data (such as specific
navigation directions), the DM communicates with external
database through the Internet. The external databases provide
various kinds of static and dynamic information, such as traffic
and parking conditions, nearby restaurant names, and the weather
forecast. The VoiceXML compiler is a part of the DM, and
compiles the ScenarioXML into the VoiceXML format that is
understandable by the VoiceXML Interpreter. Grammars and
lexicons are stored in the server system, and the DM sends them
with the VoiceXML output if the client side grammar and
lexicon are not enough for the current dialog.

3. Extensions of VoiceXML
In [4], layered extensions of VoiceXML are proposed to realize
easy development of VoiceXML applications with dynamic
contents. First, DialogXML was proposed to make it possible for
the developer to write any dialog flow using states and
transitions. Although it is possible to write an equivalent form-
filling and if-then style VoiceXML document by hand, state and
transition style is much easier to understand for developers. After
writing a DialogXML document, the DialogXML compiler
translates it into VoiceXML, which is usually much longer and
difficult to read than the original DialogXML. Second,
ScenarioXML was proposed to handle dynamic contents
collected from an external database. Since most of the
information is dynamic in real life applications, it is necessary to

generate the DialogXML output with up-to-date information
included at run-time. In our system, JSP technologies are used
for that purpose. The higher-level control of the JSP engine is
useful when writing dialog scenarios, since dialog template can
be combined with Java calls that insert dynamic content. A
ScenarioXML compiler was developed to translate
ScenarioXML documents into DialogXML.

Figure 2 shows an example of ScenarioXML; a loop of
similar states is described in a higher level programming style,
and a Java function with an incrementing argument is called to
access to the external database. In this example, each function
call gets the next instruction of the route guidance. After
providing the instruction, execution moves to the next state and
gets another instruction. Figure 3 shows another example of
ScenarioXML. Since there are some typical patterns that could
be used anywhere in the dialog, those patterns are described as
"common arcs." In this example, insertion of the "help" dialog
can be added anywhere easily using this ScenarioXML
component as a common arc.

Figure 4 shows a segment of DialogXML generated from the
examples of Fig. 2 and Fig. 3 by the ScenarioXML compiler. A
state has an action and a set of arcs. In this example, the action
and the first arc were generated from the main ScenarioXML
from Fig. 2, and the second arc was added as a common arc from
Fig. 3. Since route guidance tasks consist of several steps

Fig. 1. System architecture

VoiceXML
Interpreter

ASR

TTS

app. gram.
& lex.

Dialog
ManagerCompiler

HTTP

Dialog
Scenario

Voice
XML

gram.
& lex.

Internet

ServerClient

External database

Fig. 2. Example of ScenarioXML:
loop and access to external database

Fig. 3. Example of ScenarioXML: common arc

Fig. 4. Example of DialogXML

<javaloopstates namebase="s" array="Route" final="sx" index="i">
 <action><prompt>
 <javaval expr="(String)Route.get(i)"/>
 </prompt></action>
 <arc>
 <grammar src="next.gram" type="application/x-hgf" fieldlist="next"/>
 <gotoloopnext/>
 </arc>
</javaloopstate>

<jumplist>
 <arc name="help">
 <grammar src="help.gram" type="application/x-hgf" fieldlist="help"/>
 <destination dialog="help.xml"/>
 </arc>
</jumplist>

<state name="s1">
 <action><prompt>
 Go straight on Fifth Avenue.
 </prompt></action>
 <arc>
 <grammar src="next.gram" type="application/x-hgf" fieldlist="go"/>
 <dest state="s2"/>
 </arc>
 <arc>
 <grammar src="help.gram" type="application/x-hgf" fieldlist="help"/>
 <push dialog="help.xml"/>
 </arc>
</state>

(directions from an origin to the destination), they will include
several states that are similar to this example. Finally, the
DialogXML document is compiled again to generate the
VoiceXML that can be interpreted by the VoiceXML Interpreter.

A more complicated example is shown in Fig. 5. There are
two flows of the main dialog and two types of common arcs. In
this figure, every arc is related to a specific grammar. It means
that the control of the dialog flow is tightly related with the
grammar selection. This principle is described in detail in the
next section.

4. Grammars and Lexicons
In VoiceXML, a grammar specifies the coverage of the user's
utterance. It includes both the set of allowed words and the
structure of the sentence in terms of parts-of-speech. To avoid
confusion, we refer to the former as a "lexicon", the latter as a
"grammar" and a pairing of a lexicon and a grammar as a
"<grammar>." A <grammar> operates on an input to capture a
set of attribute-value pairs from the user's utterance. One can
claim that the widest coverage of the user's utterance could be
achieved by using a LVCSR module and a statistical language
model. In such a case, an NLP module must be used to extract
information about a specific attribute-value pair. However, it is
not reasonable to implement such modules in the client system
because the computational resources are limited in the vehicle.
Therefore, we use a simple speech recognizer with a regular
grammar and a small lexicon, defined as a <grammar>, in the
ASR part of the client system.

Another important role of a <grammar> is the control of the
dialog flow. In Fig. 5, it is shown that each arc has a <grammar>
specified by a filename with the ".gram" extension. Since the
VoiceXML specification allows us to include multiple
<grammar>s in a form, we can easily split the flow of the dialog
by checking which <grammar> covers the user's utterance. If we
have the table of <grammar> names and the table of attribute-

value pairs allowed in each <grammar>, the developer can write
ScenarioXML documents simply by referring to the appropriate
<grammar>s.

In speech systems, it is also important to keep <grammar>s
small because the larger the perplexity, the more recognition
errors will occur. Therefore, building <grammar>s requires
balance between two competing constraints: keeping the
<grammar> small for recognition accuracy, and expanding to
achieve sufficient coverage. A skilled programmer may be able to
write such <grammar>s by hand, but it would also be useful to
have a system that can create such <grammar>s automatically.

Figure 6 describes a procedure for automatic <grammar>
creation using a corpus[9]. We also refer to it as "grammar
compilation" because a basic grammar is written by hand, and
then compiled into a form that is harder for humans to read but
more suitable for the specific task. First we create a unification
grammar (UG)[10], that is written in a human readable manner.
The UG is then compiled into a context free grammar (CFG) by
expanding all constraints. For a single UG rule, a set of CFG
rules is created where each CFG rule corresponds to a single set
of legal feature-value assignments on the UG rule right-hand
side. Then the CFG is compiled to a regular grammar (RG) by
introducing the upper limit of the number of recursions[11]. The
derived RG can be expressed by a finite state machine (FSM) as
in the figure. Then the FSM is used to parse the sentences in the
corpus. After parsing all sentences, only the nodes and arcs that
were activated by any sentence remain, and other nodes and arcs
are deleted. By this procedure, we can have a reduced regular
grammar that covers all sentences in the corpus and is smaller
than the original grammar.

On the other hand, there is no automatic lexicon compilation
scheme so far. If we use only the words from the original corpus
that were recognized by arcs in the grammar, the generalization
ability would be very weak. The sentence "How can I get to
Tokyo?" would not be covered even if the corpus includes "How
can I get to Kyoto?" However, if we generalize arcs to recognize

Fig. 6. Grammar Compilation Using CorpusFig. 5. Transitions and grammars

Main dialog

S

E

E

directions.gram

weather.gram

next.gram next.gram

next.gram next.gram

PARKING PARKING

HELP

HELP

HELP

HELP

Common arcs

next.gram next.gram

parking.gram

help.gram ok.gram

ok.gram

PARKING

HELP

HELP

S E

Corpus

S E

Unification Grammar

Context Free Grammar

Regular Grammar (FSM)

Reduced Regular Grammar

any words matching the appropriate part of speech, the
generalization would be too strong, and poorer speech
recognition performance would result. Currently we are using
semantic word recognition categories (e.g., LOCATION) that are
created partly by hand for each of our tasks. Automatic lexicon
compilation using a corpus would be a future task of this project.

5. Switching External/Internal Applications
In car telematics systems, communication between the server and
the client is usually unstable. The system must be robust against
sudden channel disconnection. The VoiceXML specification
includes an "error.badfetch" event that signals an error in
fetching the requested document. Therefore, our VoiceXML
documents have event handlers for "error.badfetch" that switches
dialog control to local, compact application inside the client. For
example, if the dialog is about traffic guidance, the internal
application will know the route from the current position to the
destination, but will not have access to any dynamic information
such as the current traffic conditions. If the user asks about
traffic conditions when the channel is lost, the system would
reply "I'm sorry. Currently I can't access that information." Then
the local dialog manager will switch into a wait state, and poll
the server periodically in an attempt to reconnect, until it is
forced to proceed to the next dialog by the user's command.

It is also possible to store the complete DM application in the
client if the application does not require any dynamic
information. For example, voice control of the vehicle air-
conditioner can be done within the client. By using client-side
applications for such small tasks, we can reduce bandwidth
utilization between the client and the server.

As described in Section 2, client-side applications can use the
"back door" of the VoiceXML Interpreter to communicatewith it
asynchronously. This mechanism would be convenient if we
want the system to interrupt the dialog as soon as it detects the
network re-connection. However, it is also possible to realize
client-side applications simply by accessing static VoiceXML
documents stored in the client.

6. Current Status
We have developed an initial system that is integrated with the
ScenarioXML and DialogXML compilers. The control of the
dialog flow using grammars and lexicons described in Section 4
was also implemented, although the automatic grammar
compilation using a corpus is currently being tested in a separate
prototype system. The task switching described in Section 5 is
also being tested separately. The initial system will be modified
to communicate with the internal GPS module, as described in
Section 2, by the date of the workshop.

7. Conclusions
In this paper, we described a dialog management architecture for
car telematics systems. The system consists of the client and the
server, and designed to minimize the communication bandwidth
utilization between them. In the server system, the Dialog
Manager controls the dialog in accordance with the pre-defined
scenarios written in ScenarioXML. The developer can write
state-and-transition style dialogs using various templates, which

support integration of dynamic information from external
databases. The analysis of each user utterance within a dialog is
achieved by a pre-selected grammar and lexicon, so that the
developer has only to select appropriate sets of grammars and
lexicons in each dialog. These grammars can be written by hand,
but it is also possible to construct them automatically using
sample dialogs for each task. Finally, we described how the
system switches control between the server and the client
according to the status of the communication channel. The
system is robust in the presence of sudden network
disconnections, and bandwidth utilization can be reduced by the
use of client-side applications for small, static tasks.

Acknowledgements
The authors would like to thank Ichiro Akahori and Masahiko
Tateishi of DENSO Research Laboratories for their support in
collecting dialog corpora.

References
[1] W3C, "Voice Extensible Markup Language (VoiceXML)

Version 2.0 Working Draft,"
http://www.w3c.org/TR/voicexml20/

[2] B. Carpenter, S. Caskey, K. Dayanidhi, C. Drouin, and R.
Pieraccini, "A Portable, Server-Side Dialog Framework for
VoiceXML," Proc. of ICSLP 2002

[3] R. Pieraccini, S. Caskey, K. Dayanidhi, B. Carpenter, and M.
Phillips, "ETUDE: A Recursive Dialog Manager with
Embedded User Interface Patterns," Proc. of ASRU 2001

[4] E. Nyberg, T. Mitamura, P. Placeway, and M. Duggan,
"DialogXML: Extending VoiceXML for dynamic dialog
management," Proc. of HLT 2002

[5] Sun Microsystems, "JavaServer Pages,"
http://java.sun.com/products/jsp/

[6] X. Huang, F. Alleva, H. Hon, M. Hwang, K. Lee, and R.
Rosenfeld, "The SPHINX-II Speech Recognition System: An
Overview," Computer Speech and Language," vol.2, pp.137-
148, 1993

[7] E. Nyberg, and T. Mitamura, "The KANTOO Machine
Translation Environment," Proc. of AMTA 2000

[8] T. Kujirai, H. Takahashi, A. Amano, and N. Hataoka,
"Development of VoiceXML Interpreter and Continuous
Words Recognition Engine - Development of Speech
Recognition Technologies for Voice Portal," (in Japanese)
IPSJ SIGNotes, SLP-33-12, 2000

[9] M. Tateishi, I. Akahori, S. Judy, Y. Obuchi, T. Mitamura,
and E. Nyberg, "A Spoken Dialog Corpus for Car Telematics
Services," Proc. of Workshop on DSP in Vehicular and
Mobile Systems, 2003 (to appear)

[10] S. M. Shieber, H. Uszkoreit, J. Robinson, and M. Tyson,
"The formalism and Implementation of PATR-II," SRI
International, Menlo Park, California, 1983.

[11] A. Black, "Finite State Machines from Feature Grammars,"
Proc. of Int. Workshop on Parsing Technologies, 1989

