Proceedings of the Human Language Technology Conference (HLT-2002), San Diego, CA, USA, March.

DialogXML: Extending VoiceXML for Dynamic Dialog Management

Eric Nyberg, Teruko Mitamura,
Paul Placeway and Michael Duggan
Language Technologies Institute

Carnegie Mellon University

Pittsburgh, PA 15213

Nobuo Hataoka
Central Research Laboratory
Hitachi Ltd.
Kokubunji, Tokyo, Japan
hataoka@crl.hitachi.co.jp

{ehn,teruko,pwp,md5i}@cs.cmu.edu

Abstract

The characteristics of VoiceXML make it an
attractive choice for the implementation of
embedded dialog systems on networked hard-
Nevertheless, VoiceXML lacks some
important features found in existing propri-
etary approaches. It is difficult to build
a complex, multi-dialog system directly in
VoiceXML. This paper describes DialogXML,
an extension to VoiceXML that supports a
more implicitly declarative language for dia-
log scenarios, and ScenarioXML, a straight-
forward combination of DialogXML with the
template-filling mechanism of Java Server
Pages. The paper describes an initial pro-
totype system, which extends the OpenVXI
VoiceXML interpreter for DialogXML, imple-
ments a web server for ScenarioXML, and uti-
lizes the KANTQOO natural language analyzer
for understanding user inputs.

ware.

1. Introduction

Depending on the nature of the task, a dialog
system might utilize different dialog represen-
tations of varying degrees of complexity. The
simplest approach involves the use of a hierar-
chy of menus or state transition graphs, which
restrict the user to a fixed set of pre-defined
dialog turns. More sophisticated systems sup-
port mixed initiative, where the precise num-
ber and sequence of dialog turns are not pre-
defined. Some tasks (e.g. navigation or route
planning) require dynamic creation of dialog
turns at run time, based on access to a remote
database or information service [7,2, 3, 11, 9].

The proposed W3C standard for Voice XML
[13] provides a representation for flexible
form-filling in a dialog scenario. A single
VoiceXML element can contain several form
elements, which correspond to dialog states.

A form can invoke multiple grammars in or-
der to recognize the user’s input. The sys-
tem’s response depends on which context vari-
ables have been set as a result of input match-
ing. Through the use of conditional expres-
sions and goto statements, the VoiceXML in-
terpreter may transition to a different form in
the current VoiceXML structure, or to a new
VoiceXML structure. Transitions within the
current structure are local to the VoiceXML
interpreter; transitions from one VoiceXML
structure to another are triggered by URLs
which are retrieved via HTTP/CGI (see Fig-
ures 6 and 7).

The characteristics of VoiceXML make it
an attractive choice for the implementation
of embedded dialog systems on networked
hardware. The VoiceXML interpreter may
rely on remote server(s) to provide the se-
quence of dialog scenarios to be presented to
the user. Nevertheless, VoiceXML lacks some
important features found in existing propri-
etary approaches, such as the HDDL descrip-
tion language supported by Philips Speech-
Mania [2, 3]. While the form-filling action
of the VoiceXML interpreter does not impose
a particular dialog ordering upon the user,
and could be thought of as a simple agenda
or plan-based dialog manager, it is difficult
to build a complex, multi-dialog system di-
rectly in VoiceXML. If an application requires
several related dialogs, and flexible switching
between dialogs and subdialogs, all possible
transitions from a given state must be coded
exhaustively by hand. This is less preferable
than the more declarative approach taken in
HDDL, where dialogs are defined as separate
scenarios and the system automatically han-
dles transitions between dialogs.

Our goal is to extend VoiceXML to make it



more practical for large-scale dialog systems.
We envision a mobile application environment
(e.g. a mobile information system) where an
embedded speech recognizer and VoiceXML
interpreter are connected to remote servers
that support a variety of information-seeking
tasks (car navigation, restaurant information,
voice-activated control, etc.). While we pre-
fer the simplicity of VoiceXML for run-time
processing, a more supportive representation
is required for creation of the dialog scenar-
i0s. It should be possible for different devel-
opers to write dialog scenarios independently
— a given developer should not need to know
the names of the other dialogs, their states,
etc. in advance in order to write his or her
own dialogs. It should also be possible to in-
tegrate the VoiceXML interpreter with more
sophisticated natural language analyzers, to
take advantage of the broader coverage and
deeper linguistic analysis provided by unifica-
tion grammar-based systems [6].

This paper describes DialogXML, an ex-
tension to VoiceXML that supports a more
implicitly declarative language for dialog sce-
narios. We also introduce ScenarioXML, a
straightforward combination of DialogXML
with the template-filling mechanism of Java
Server Pages (JSP) [12]. ScenarioXML pro-
vides an easy way to dynamically generate
content (e.g. navigation directions accessed
from a remote database). Dialog scenarios
in ScenarioXML are also JSP pages. Dy-
namic content creation and compilation of Di-
alogXML to VoiceXML are handled automat-
ically at run time through the invocation of
JSP filters by the web server. We also describe
the integration of the OpenVXI VoiceXML in-
terpreter with the unification grammar and
pattern matching components of the KAN-
TOO natural language analyzer [6] (see Fig-
ure 1).

We have constructed an initial prototype
system that handles text input. The next
phase of our research will address the in-
tegration of the dialog management system
with speech recognition and understanding.
Therefore this paper does not address an im-
portant set of issues related to robustness at
the speech recognition / NLP interface. The
proposed architecture is independent of and
neutral with respect to speech recognition;
any approach which can be integrated via the

grammar mechanism in VoiceXML can be uti-

lized.

In Section 2, we introduce DialogXML and
ScenarioXML. In Section 3, we present the
details of the architecture and the current im-
plementation. In Section 4, we summarize the
current status of the system and discuss our
planned research activities for the future.

2. Dialog XML and Scenario XML

The use of VoiceXML with a suitable inter-
preter has generated substantial interest as
an effective way to develop simple command
and control systems [13]. However, in order to
use an existing VoiceXML interpreter in more
complex environments with dynamic context
and context switching, some enhancements to
the VoiceXML representation and interpreta-
tion process are desirable.

Dialog
Manager
A
HTTP/CGI VoiceXML
Y

M. Voice XML
Interpreter

A

Slot-Filler INPUT
Pairs Y
KANTOO
Analyzer

Figure 1: Modular Architecture

Most VoiceXML dialog systems use simple
context-free language models for user utter-
ances. In order to support full natural lan-
guage parsing (e.g., with a unification gram-
mar), the VoiceXML interpreter must be ex-
tended to handle grammar elements that con-
tain references to more sophisticated gram-
mar modules.

Natural dialog has a notion of state, and
dialog designers often think in terms of state-
transition networks. VoiceXML supports sim-
ple form and action pairs, but does not ex-
plicitly model states and transitions among
states. Although it is possible to author and
maintain a set of large-scale dialogs directly
using VoiceXML, it would be tedious and
time-consuming to do so.



2.1. Dialog XML

To address these issues, we have formulated
a new level of representation, called Dialog
XML (DXML), which clearly expresses the
notion of states and transitions. Further-
more, each element in Dialog XML has an
unambiguous mapping to a corresponding set
of VoiceXML elements, so that Dialog XML
can be automatically compiled to VoiceXML.
An example Dialog XML structure is shown
in Figure 5. The corresponding (compiled)
VoiceXML structure is shown in Figures 6 and

7.

In Dialog XML, transitions between states
in a dialog are clearly represented by arc el-
ements which contain grammar and destina-
tion (dest) elements. This makes the struc-
ture of the resulting dialog much easier to
follow visually. Note that the corresponding
VoiceXML structure does not directly link or
encapsulate the grammar and destination to-
gether. In VoiceXML 1.0, the form element
allows its grammar and filled tags to appear
anywhere. By enforcing a more dialog-centric
structure, Dialog XML provides a more con-
venient notation for the dialog designer.

Transitions in Dialog XML include dest
and push. The dest element is directly
mapped to the £illed element in Voice XML.
However, the push element cannot be directly
mapped to a corresponding VoiceXML ele-
ment. Instead, each push is mapped into a
specially constructed form element which in-
vokes a subdialog and returns to the current
state. For example, the single, concise push
in the second arc in state s1 in Figure 5 corre-
sponds to the (much more complicated) third
form element in Figure 6.

2.2. Scenario XML

An independent consideration is how the sys-
tem will handle dynamic content and linking
between dialogs. In a system with a wide
variety of possible interactions or informa-
tion exchanges, it becomes necessary to work
with templates rather than static, hard-wired
states and transitions. Since our goal is to use
VoiceXML interpretation at run-time, some
higher-level representation must be provided
to represent dynamic content in a more ab-
stract manner.

To address this need, Dialog XML is com-

bined with a template-filling system (Java
Server Pages [12]), deriving a higher-level rep-
resentation we refer to as Scenario XML. Java
Server Pages are used to express dynamic con-
tent (see Figure 4). In the example, the arcs
which follow the prompt element are filled in
by invoking a filter (common-arcs. jspf) that
will derive the possible set of transitions by
examining the available set of dialogs for trig-
gering grammars. The four arcs generated
by this call in the current system follow the
prompt in Figure 5. The process of gather-
ing the triggering conditions for a set of di-
alogs into a set of arcs is visually represented
n Figure 2.

BEFORE
o
o
T

AFTER

\//

Figure 2: Arc Compilation

The Scenario XML example illustrates two
important characteristics of our approach: a)
when dialogs share a considerable amount of
content and/or structure, this can be writ-
ten once in a shared template; b) dialogs can
be constructed independently of one another,
since the system will insert global transitions
to other dialogs automatically. This is impor-
tant because requiring the human developer
to maintain a correct and consistent treat-
ment of global transitions across a large set of
dialogs with many states is cumbersome and
error-prone.

3. Architecture and Data Flow

The architecture shown in Figure 1 illus-
trates how the Dialog Manager component in-
teracts with the VoiceXML Interpreter and
KANTOO Analyzer. The system is started
by calling the VoiceXML Interpreter on the
JSP page that represents the top-level dia-
log scenario (main.jsp, see Figure 4). The
JSP URL is fetched from the Dialog Man-
ager (web browser), which invokes the ap-
propriate JSP calls to fill in the dynamic in-
formation. The Dialog Manager also invokes



a JSP filter which converts the higher-order
DialogXML constructs into their low-level
VoiceXML forms!. The resulting VoiceXML
page is passed back to the VoiceXML inter-
preter, which the prints the prompt and initi-
ates the dialog with the user.

Once the user has entered some input, the
system will test all of the grammar elements in
the current form; these correspond to the arcs
in a particular dialog state in the original Di-
alogXML. In order to integrate the use of full
NL analysis, we extended the grammar inter-
pretation mechanism in VoiceXML by defin-
ing a new grammar type, kantoo/patrick.
This involves creation of a new type-to-class
mapping, and coding of a new class that
implements the abstract grammar interface
(these are straightforward extensions, which
are directly supported by the VoiceXML im-
plementation).

The KANTOO Analyzer processes the user
input to produce an interlingua expression
(semantic frame). The individual grammar
elements in VoiceXML refer to pattern-
matching rules which are unified with the in-
terlingua, possibly setting slot-filler values in
a context variable as a side-effect (see Figure
3). The main advantage of this approach is
that multiple variations of the same utterance
can be recognized by a single semantic pat-
tern rule, a useful improvement over simpler
context-free or regular-expression grammars.

In the standard Voice XML interpreter, sub-
dialogs can only influence the outcome of
a parent dialog through their return value.
Since the parsing of a complex NL input
might provide several important pieces of in-
formation about the context (current loca-
tion, destination, etc.), it was necessary to
extend the context-handling capabilities of
VoiceXML. The new grammar type can re-
turn a set of slot-filler context variables to the
VoiceXML interpreter, which merges this in-
formation with the existing dialog context.

Another feature of standard VoiceXML is
that the context of a particular dialog does
not persist when a new dialog is invoked.
Since we require the ability to maintain con-

LA full description of the DXML to VoiceXML

compiler is beyond the scope of this document.

;3 This PATRICK rule file handles the
;; top-level switch to the directions module.
;; It accepts an optional location and
;; destination.
(node DIRECTIONS :rules
((#TRY*
((*0R* ((%(ir patient CONCEPT)
=c *0-DIRECTION)
(%dir <= %(ir patient)))
((%(ir object CONCEPT)
=c *0-DIRECTION)
(%dir <= %(ir object)))
)
;3 This is our convention for
;3 reporting which pattern matched
(%(x "directions_request'") = "accept")
(*TRY* ((%pp <= %(dir q-modifier))
(% (pp CONCEPT)
=c "*Q-SOURCE_FROM")
(%(x location)
= %(pp object CONCEPT))))
(*TRY* ((%pp <= %(dir q-modifier))
(%(pp CONCEPT) =c "*Q-GOAL_TO")
(%(x destination)
= %(pp object CONCEPT)))))))

Figure 3: Sample Context Rule

text across two sequential dialogs (e.g., if the
user asks about parking at a location follow-
ing a navigation scenario), it was necessary to
modify the Voice XML interpreter to maintain
context across dialogs unless an explicit reset
is encountered.

While implementing these features did in-
volve modifications to the VoiceXML Inter-
preter itself (and should be considered a pro-
posed extension to the 1.0 standard), the
modifications were minor, involving less than
20 lines of source code. As a result, the
VoiceXML interpreter becomes a “stateful”
rather than “stateless” client in the architec-
ture.

4. Current Status and Future Work

The first prototype of this system has been
implemented using the Speechworks VXML
Interpreter [10], Tomcat web server [5] and
KANTOO Analyzer [6]. The Dialog Man-
ager (Tomcat) and KANTOO run on a sin-
gle server machine, which is accessed by the
VXML Interpreter via HT'TP/CGI (Tomcat)
and TCP/IP (KANTOO). A set of simple
navigational dialogs have been implemented
in English, which feature information about
directions and parking that are dynamically



accessed from a separate database. The com-
pilation of ScenarioXML and DialogXML to
VoiceXML is carried out in real time, and re-
quires at most only a few seconds per invoca-
tion.

Our next steps include: a) extending
the system to Japanese; b) adding other
information-seeking tasks (e.g. restaurant in-
formation) and control tasks (car systems in-
terface); ¢) integration with real-time speech
recognition. We believe that DialogXML
and the proposed extensions to VoiceXML
will provide a useful open-source system that
is much more suitable for dialog manage-
ment in large-scale practical applications than
VoiceXML alone.

<DialogXML>
<dialog name='main''>
<state name="s0'">
<arc>
<dest state="s1"/>
</arc>
</state>
<state name="s1'">
<action><prompt>
How can I help you?
</prompt></action>
<%@ include
file="dxml-templates/common-arcs.jspf" %>
<arc>
<dest state="s0"/>
</arc>
</state>
</dialog>
</DialogXML>

Figure 4: Sample ScenarioXML

<DialogXML>
<dialog name='"main'>
<state name='"s0">

<arc>
<dest state='"s1"/>
</arc>
</state>
<state name='"s1'>
<action><prompt>
How can I help you?
</prompt></action>
<arc>

<grammar src=''directions_help.pat"
type="kantoo/patrick"/>
<push dialog="directions-help.jsp" />
</arc>
<arc>
<grammar src=''directions_request.pat"
type="kantoo/patrick"/>
<push dialog=''directions-request.jsp'"/>
</arc>
<arc>
<grammar src='"parking_request.pat"
type="kantoo/patrick"/>
<push dialog="parking-request.jsp"/>
</arc>
<arc>
<grammar src="top_level_no_context.pat"
type="kantoo/patrick'/>
<dest dialog='"main.jsp"/>
</arc>
<arc>
<dest state="s0"/>
</arc>
</state>
</dialog>
</DialogXML>

Figure 5: Sample DialogXML



<vxml version="1.0">
<form id='"main.sO">
<block>
<if cond="delete DMEnv.topic"/>
<goto next='"#main.s1'"/>
</block>
</form>
<form id='"main.s1">
<grammar src="top_level_no_context.pat"
type="kantoo/patrick'"/>
<grammar src="park_req.pat"
type="kantoo/patrick'/>
<grammar src='"dir_req.pat"
type="kantoo/patrick'"/>
<grammar src='"dir_help.pat"
type="kantoo/patrick'/>
<block>
<prompt>How can I help you?</prompt>
</block>
<block cond="DMEnv.top_level_no_context
!'= undefined">
<goto next="main.jsp"/>
</block>
<field expr="DMEnv.top_level_no_context"
name="top_level_no_context"/>
<block cond="DMEnv.park_req
!= undefined">
<if cond="delete DMEnv.park_req"/>
<goto next="#main.sl.arc2"/>
</block>
<field expr="DMEnv.park_req"
name="park_req"/>
<block cond="DMEnv.dir_req
!'= undefined">
<if cond="'delete DMEnv.dir_req"/>
<goto next="#main.sl.arcl"/>
</block>
<field expr="DMEnv.dir_req"
name='dir_req"/>
<block cond="DMEnv.dir_help
!'= undefined">
<if cond="delete DMEnv.dir_help"/>
<goto next="#main.sl.arc0"/>
</block>
<field expr="DMEnv.dir_help"
name="dir_help"/>
<filled namelist="dir_help">
<if cond="delete DMEnv.dir_help"/>
<goto next="#main.sl.arc0"/>
</filled>
<filled namelist="dir_req">
<if cond="'delete DMEnv.dir_req"/>
<goto next="#main.sl.arcl"/>
</filled>
<filled namelist="park_req">
<if cond="delete DMEnv.park_req"/>
<goto next="#main.sl.arc2"/>
</filled>
<filled namelist="top_level_no_context'>
<goto next='"main.jsp"/>
</filled>
<block>
<goto next="#main.s0"/>
</block>
</form>

Figure 6: Sample Voice XML (Part I)

<form id='"main.sl.arc0'">
<subdialog name='retval"
src="directions-help. jsp">
<filled>
<if cond="retval.retval'>
<goto next="#main.s1"/>
<else/>
<goto next="#main.s1"/>
</if>
</filled>
</subdialog>
</form>
<form id='"main.sl.arci'">
<subdialog name='retval"

src="directions-request. jsp">

<filled>
<if cond="retval.retval">
<goto next="#main.s1"/>
<else/>
<goto next="#main.s1"/>
</if>
</filled>
</subdialog>
</form>
<form id="main.sl.arc2">
<subdialog name='retval"
src='""parking-request. jsp">
<filled>
<if cond="retval.retval">
<goto next="#main.s1"/>
<else/>
<goto next="#main.s1"/>
</if>
</filled>
</subdialog>
</form>
</vxml>

Figure 7: Sample VoiceXML (Part II)



Acknowledgements

The authors thank Denso Corporation and
Hitachi Ltd. for their support of this research.

References

(1]

[10]

[11]

Araki, M., K. Ueda, T. Nishimoto and Y. Y.
Niimi (2001). “Dialogue scenario generation
from XML-based database”, Proceedings of
the 1st NLP and XML Workshop, held at
the Sixth Natural Language Processing Pa-
cific Rim Symposium, Nov. 27-30, Tokyo,
Japan, http://www.afnlp.org/nlprs2001

Aust, Harald and Olaf Schroer (1998). “An
Overview of the Philips Dialog System”,
Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop
February 8-11, 1998, Lansdowne, Virginia.

Baum, M., G. Erbach, M. Kommenda, G.
Niklfeld and E. Puig-Waldmiller (2001).
“Speech and Multimodal Dialogue Sys-
tems for Telephony Applications Based
on a Speech Database of Austrian Ger-
man”, OGAI Journal 20/1, pp.29-34, 2001.
http://wwu.ftw.at

Belvin, R., et al., “Development of the HRL
Route Navigation Dialogue System”, Proc.
HLT 2001, pp. 74-78.

Jakarta
http://jakarta.apache.org/tomcat.

Tomcat,

Nyberg, E. and T. Mitamura (2000). “The
KANTOO Machine Translation Environ-
ment”, Proceedings of AMTA 2000.

Price, P. (1990). ” Evaluation of Spoken Lan-
guage Systems : The ATIS domain”, Proc.
3rd DARPA Workshop on Speech and Natu-

ral Language.

Ramakrishnan, N., et al., “Mixed-Initiative
Interaction = Mixed Computation”, Proc.
ACM SIGPLAN Workshop PEPM’02, Jan-
uary 2002

Seneff, S., et al., “Organization, Communi-
cation, and Control in the Galaxy-II Con-
versational System”, Proc. Eurospeech 99.

SpeechWorks OpenVXI

http://www.speech.cs.cmu.edu/openvxi

2.0.1,

David Stallard, ”Talk-n-Travel: A Conver-
sational System for Air Travel Planning,” in
Proceedings of the Association for Computa-
tional Linguistics 6th Applied Natural Lan-
guage Processing Conference (ANLP 2000),
Seattle, Washington, April 29 - May 4, 2000,
pp. 68-75.

[12] Sun Microsystems (2002).
Pages”, http://java.sun.com/products/jsp.

[13] VXML 1.0, 03/07/00, http://wew.u3.org

“Java Server



