Automatic Rewriting for Controlled Language Translation

Teruko Mitamura and Eric Nyberg
Language Technologies Institute,
Carnegie Mellon University
5000 Forbes Ave. Pittsburgh, PA 15213, USA

teruko@cs.cmu.edu

Abstract

This paper summarizes the goals
of controlled language authoring for
machine translation, and discusses
why automatic rewriting is an im-
portant research area for controlled
authoring!. We present the KANT
controlled language rewriting archi-
tecture, which combines a rewrit-
ing engine with interactive dialogue.
We also present some rewriting ex-
amples which are based on the re-
sults of an empirical analysis of real
texts. We conclude with a discus-
sion of various open issues for the
implementation and deployment of
automatic rewriting systems.

1 Introduction

Natural language texts are often written us-
ing complex and ambiguous sentences, and
humans as well as computers may experi-
ence difficulty in understanding and translat-
ing them. The use of Controlled Language
(CL) has been introduced to encourage au-
thors to write texts simply and consistently.
Improving a text through the use of Con-
trolled Language will also improve the quality
of any translations of that text, whether done
by humans or machines.

The KANT system (Knowledge-based, Ac-
curate Natural-language Translation) (Mita-
mura, et al., 1991; Nyberg and Mitamura,
1996) is focused on the translation of tech-
nical documents written in a controlled lan-

'Proceedings of the NLPRS2001 Workshop on Au-

tomatic Paraphrasing: Theories and Applications

guage (Mitamura, 1999). KANT has been
adapted for multilingual translation in vari-
ous domains, including heavy equipment doc-
umentation, computer manuals, automotive
manuals and medical record texts.

Although the use of controlled language has
demonstrable benefits, using a controlled lan-
guage can be cumbersome, especially when
the author has difficulty deciding how to
re-write an existing sentence to conform to
the controlled language rules. A CL system
should provide feedback to the user, in the
form of alternate phrasings of an incorrect in-
put, to guide the process and make it more
efficient. For this reason, automatic rewriting
of sentences is an important research topic for
practical CL systems.

In this paper, we first introduce the field
of Controlled Language and the process of
controlled language checking. We then dis-
cuss automatic rewriting for machine transla-
tion, and present the KANT controlled lan-
guage rewriting architecture. We also raise
some outstanding issues regarding automatic
rewriting, and discuss ongoing and future
work.

2 Controlled Language Rewriting

A controlled language (CL) is a form of lan-
guage usage restricted by grammar and vo-
cabulary rules. It is important to note that
there is no single standardized, controlled ver-
sion of a particular language (e.g. “English
Controlled Language”). In reality, it is nec-
essary to develop different types of controlled
language depending on the domain and pur-
pose of the texts that you are working on,
since these will vary in vocabulary and writ-

ing style. CL can be used solely as a guide-
line for authoring, with a checking tool to
verify conformance, or in conjunction with
machine translation. In both situations, the
overall goals are to achieve consistent author-
ing, to reduce ambiguity and complexity, and
encourage clear and direct writing which can
improve the quality of the source text and the
translation output (Mitamura 1999).

We can also characterize CL as human-
oriented or machine-oriented. When CL is
written to improve text comprehension by
machines, restrictions must be precisely de-
fined for computation. For example, the re-
striction “Do not make noun clusters of more
than 4 nouns” can be evaluated computa-
tionally by a system with a lexicon and a
noun phrase grammar. On the other hand,
a CL that is intended to improve text com-
prehension by humans may contain restric-
tions that are more general and/or vague.
For example, “Make your instructions as spe-
cific as possible”, or “Present new and com-
plex information slowly and carefully”. These
restrictions cannot be checked computation-
ally, since characteristics such as “specific”,
“slowly” and “carefully” aren’t precisely de-
fined, but such restrictions can be useful in-
formal guidelines for human authors. In this
paper, we focus on machine-oriented CL rules,
which are formally specified and directly com-
putable.

2.1 CL Advantages and Challenges

In general, the use of CLs can improve the
source text in terms of readability, compre-
hensibility, consistency and reusability. Lexi-
cal constraints, which restrict vocabulary size
and meaning for a particular application do-
main, are a key element in controlling a source
language. In previous work, we have shown
that the most important way to reduce am-
biguity of source text is to restrict the lexi-
con (Baker, et al., 1994). The reduction of
homonymy and synonymy may enhance the
readability, consistency and comprehensibil-
ity of the text. When the text is written us-
ing standard terminology and sentence struc-
tures, a uniformity of style is achieved and

it may become easier to reuse the text else-
where. When CL is used in conjunction with
translation memory, this consistency makes
text easy to reuse, and hence more cost-
effective.

The primary challenge when adopting a CL
approach is that the writing task may take
longer. First of all, authors need to learn the
CL rules in order to write texts. In addition,
rewriting text from legacy documents which
do not conform to the CL. may be more time-
consuming than writing new CL text. Rewrit-
ing involves more than just replacement of un-
approved words with their approved counter-
parts. After initial rewriting is completed by
the author, an additional editing and verifi-
cation step may be undertaken by an experi-
enced editor before final approval.

Another concern is the initial cost of devel-
oping a CL for a particular organization and
document production process. New develop-
ment of a custom CL and document produc-
tion system may not be cost-effective for a
small production volume. Before embarking
on full-scale development, it is useful to com-
plete an initial feasibility study to evaluate
the benefits and costs in a particular customer
scenario.

2.2 CL Checking

It is difficult for an individual author to mem-
orize all of the lexical and grammatical rules
in a CL, especially in a domain with a large
vocabulary. Therefore it is useful to provide
a software system that can help authors to
verify that their sentences conform to the CL
A CL checker verifies that all words
and phrases are approved, and verifies that
all writing rules are obeyed. In addition, a
CL checker may offer feedback to the author
during checking, when words or sentences are
identified which do not conform to the CL.

The KANT Controlled English Checker
checks each sentence for conformance, and
also supports interactive disambiguation. If
more than one analysis is found for a sentence,
the system determines whether the cause is a
lexical ambiguity or a structural ambiguity,
and attempts to resolve it.

rules.

Some ambiguities can be resolved automat-
ically, using a semantic model of the do-
main or heuristic preferences (Mitamura et
al., 1999). Unresolved ambiguities are high-
lighted for the user. For lexical ambigui-
ties, the author is asked to choose the in-
tended meaning for the ambiguous word. For
structural ambiguities, the author is asked to
choose the intended structural relationship;
for example, prepositional phrases in English
can potentially modify more than one con-
stituent in a sentence. The system annotates
the original input to indicate the author’s
choice, thus disambiguating the sentence for
subsequent translation (Mitamura & Nyberg,
1995). The resulting sentence meets the con-
straints of controlled English, and encodes a
single chosen meaning for each ambiguous lex-
ical item or structural attachment.

3 CL Deployment Issues

When a controlled language is deployed for
production use by a group of authors, we
encounter a set of practical issues, includ-
ing training, usability, productivity, and long-
term maintenance.

3.1 Usability and Productivity

When CL is used in conjunction with a ma-
chine translation, the constraints on language
tend to be more strict when compared to
a CL intended just for authoring. For ma-
chine translation, it is important to have an
unambiguous input for accurate translation.
Therefore, a CL for machine translation tends
to focus on disambiguation of input sentences.
However, when deploying a controlled lan-
guage, author usability and productivity are
very important factors for CL acceptance. If
CL is too strict and/or time-consuming, then
authors may have difficulty using it effec-
tively. Another usability concern is that the
CL must retain expressiveness while restrict-
ing vocabulary and grammar. Limiting only
vocabulary does not necessarily reduce the
complexity of input sentences; in fact, authors
may need to write long, convoluted sentences
to express complicated meanings if suflicient

terminology is not available?. The balance be-
tween vocabulary size and input complexity is
very important for successful CL deployment.

In KANT Controlled English, the size of
the vocabulary is not limited @ priori, and
only those lexical or grammatical construc-
tions that may cause difficult ambiguity prob-
lems are ruled out. The result is a controlled
language that is expressive enough to write
technical documents, but limited in complex-
ity, such that high-quality translations can be
achieved.

3.2 Controlled Language
Maintenance

If we don’t need to update the terminology
or grammar once a controlled language is de-
fined, then controlled language maintenance
is not a major issue. In practice, however, we
often face an ongoing need to update the ter-
minology and grammar to keep pace with the
introduction of new products or new docu-
ment types. When hundreds of authors are si-
multaneously creating documents using a con-
trolled language, maintenance is not a trivial
task. It is important to implement a formally-
specified process for language maintenance,
which includes change requests, problem re-
porting, terminology screening, process mon-
itoring, and quality control through periodic
reviews. Once a decision has been made to
update the terminology and grammar, it is
essential to have appropriate support tools
which support rapid updates to the controlled
language system and any MT systems (Kam-
prath et al., 1998).

3.3 Controlled Language Training

For successful deployment of controlled lan-
guage, the authors must accept the notion of
controlled language and be willing to receive
appropriate training. When authors become
accustomed to writing texts in their own style
over many years, it may be difficult for them
to change their writing style. Since author us-

2An overly limited vocabulary is one factor that
led to the demise of Caterpillar’s original Fundamen-
tal English (Kamprath, et al., 1998), the predecessor
of the Caterpillar Technical English which is in use
today.

ability and productivity are essential for suc-
cess, providing comprehensive training with a
supportive CL checker is crucial. Neverthe-
less, even with full commitment and training,
CL checking can require additional time when
compared with unrestricted authoring.

If the CL checker can use automatic rewrit-
ing to provide alternatives when the author’s
sentence doesn’t pass the checker, author ef-
fort can be reduced. Since usability and pro-
ductivity are the key issues for CL deploy-
ment, it is clear that automatic rewriting for
controlled language is an important area for
research and development, both for text au-

thoring and machine translation (Mitamura,
1999).

4 Automatic Rewriting for
Machine Translation

In our work on controlled language for ma-
chine translation, the term automatic rewrit-
ing describes any process which replaces a
source language sentence with another source
language sentence, before translation begins.
Source rewriting can be undertaken for a va-
riety of reasons, including;:

e To replace an ungrammatical sentence
with a grammatical one (error correc-
tion);

e To replace a grammatical (but stylisti-
cally undesirable) sentence with another
(more stylistically ”correct”) sentence;

e To replace a sentence with a re-
structured sentence which is not nec-
essarily ”grammatical” for the human
reader, but better suited to a particular
machine translation algorithm. For ex-
ample, syntactic rearrangement to sup-
port structural transfer for a particular

target language (Shirai et al., 1998).

In this paper, we concentrate on the second
type of rewriting, where one grammatical sen-
tence is replaced with another grammatical
sentence in order to improve its style, trans-
latability, etc. In most existing controlled
language systems, such rewriting is accom-
plished manually (by the author) with the aid

of an automatic grammar checker (Mitamura
& Nyberg, 1996; Knops & Depoortere, 1998;
Wojcik, et al. 1998). There are two basic
approaches to grammar checking, and the di-
chotomy also extends to rewriting;:

e Prescriptive Approach. The controlled
language is implemented by a grammar
which describes all allowable sentences.
Any sentence which cannot be parsed by
the grammar is considered outside the
controlled language, and must be rewrit-
ten. The developers must work very care-
fully to define all of the allowable sen-
tence structures in the domain. This ap-
proach is taken by systems like Cater-
pillar Technical English (Kamprath et
al. 1998) and the Controlled Automo-
tive Service Language (Means & Godden,
1996).

e Proscriptive Approach. The controlled
language is implemented by a set of pat-
terns which will match any sentence that
should be rewritten. Only sentences
which match one of the patterns must
be rewritten. The developers may limit
their attention to only those sentence
patterns which are considered unaccept-
able. We can consider this approach to
be “partial checking”, since there may
be other problems with a sentence which
aren’t caught by the existing set of pat-
terns. This approach is taken by sys-
tems like Diebold’s controlled language
checker (Moore, 2000).

An automatic rewriting system requires
two fundamental steps:

1. Deciding whether a given input sentence
requires rewriting (checking). In a pre-
scriptive system, this involves parsing the
sentence to show that it only contains
valid lexical and syntactic structures. In
a proscriptive system, this involves iter-
ating through a set of pre-defined “error
patterns” to see if the current sentence
matches any of them.

2. Providing one or more possible rewrit-
ten alternatives (rewriting). The system

must provide rewrites that preserve the
meaning of the original and pass the ap-
propriate grammar or constraint check-

ing.

In the case of a prescriptive approach,
rewriting is triggered when a sentence can-
not be analyzed by the grammar and lexicon.
Deciding how to rewrite can be challenging
unless the system provides some information
regarding the reason(s) for the failure. In
a proscriptive approach, on the other hand,
the system knows exactly which constraint(s)
failed; since each constraint is associated with
a particular writing error, it is possible to
proceed with an automatic correction with-
out any further information. Each constraint
can be paired with a rewrite rule that specifies
how to rearrange the original sentence.

Rewrite rules can be based on the input
string (e.g., string-based pattern matching
and reordering), a syntactic analysis (e.g.,
structural transformation), or a semantic
analysis (e.g., reasoning over a meaning rep-
resentation). Depending on the language and
domain, a rewriting system may require a va-
riety of rules, some string-based, some syn-
tactic, and some semantic.

If we consider the range of characteristics
discussed so far, we can see that a variety
of automatic rewriting systems are possible
in principle. The simplest system would be
a proscriptive, string-based rewriting system,
which evalutes a small set of constraints by
string matching and rewrites sentences at the
level of the surface string. The most complex
system would be a prescriptive, semantics-
based rewriting system, which rewrites sen-
tences by understanding their meanings and
proposing acceptable paraphrases.

The approach we propose in this paper falls
somewhere in the middle. We combine the
KANTOO Analyzer®, which is a prescriptive
controlled language system, with a ”relaxed”
grammar and a set of proscriptive constraints.

*The KANTOO Analyzer, which is written in
C++, is a redesign and reimplementation of the core
algorithms of the earlier KANT Analyzer (Mitamura,
et al. 1991).

5 KANT Controlled Language
Rewriting Architecture

The architecture of the CL. Rewriting system
is illustrated in Figure 1. Sentences written
by the author are analyzed by the Analyzer,
which performs syntactic parsing using a con-
trolled grammar and lexicon. When a sen-
tence cannot be parsed, the Rewriting Engine
attempts to rewrite the sentence to a form
that can be analyzed. When a sentence parses
successfully, the Rewriting Engine checks it
for other optional improvements. We exam-
ine these two types of processing below (see
Section 6 for examples from a particular cor-

pus).

5.1 Rewriting Sentences that Don’t
Parse

When a sentence cannot be analyzed by the
CL Analyzer, it is identified as a candidate
for rewriting, and is passed to the Rewrite
Engine (see Figure 1). The rewrite algorithm
contains the following steps:

1. Iterate through the surface rewrite pat-
terns. If one matches, perform the indi-
cated surface transformation on the sen-
tence. Re-check the sentence by passing
the rewritten version to the KANTOO
Analyzer.

2. If no surface pattern matched, or no
surface pattern produced an acceptable
rewrite, then try to do a recovery parse.
Find the set of possible syntactic anal-
yses using a relaxed (less constrained)
lexicon, grammar,
straints. The relaxed grammar will
loosen CL restrictions such as agree-
ment (e.g., Subject-Verb agreement in
English), grammatical constraints (e.g.
allow conjoined VPs), and lexical con-
straints (e.g., unapproved synonyms).

In KANTOO, the relaxed grammer (or
recovery grammar) is a set of additional
grammar rules which are added to the
CL grammar during the recovery parse.
Each recovery rule annotates the con-
stituent it produces, to indicate precisely

and semantic con-

Author Sentence OK
to MT system

<:> o KANTOO Sentence OK
npu Analyzer Rewritin
No Parse Found g
Sentence - Engine

* * Unresolved

Ambiguit
\ recheck uy
L

author rewrite
\

1 Rewrite (automatic)

author dialog

\—> Interactive |

No Rewrite (manual)

Dialog

> 1 Rewrite (interactive)

Figure 1: KANT Controlled Language Rewriting Architecture.

where a non-conforming constituent was
found.

3. For each recovered parse, find all of the
consituent nodes that are labelled with
a recovery strategy. For each strategy,
invoke a stored procedure which rewrites
the original consituent corresponding to
the recovered constituent, thus deriving
a rewritten input.

4. Select one of the rewritten sentences, and
pass it back to the KANTOO Analyzer;
or, query the user and offer a set of
rewritten sentences to choose from. If
no possible rewrites are generated, then
the system informs the user that there is
an issue with the input, and the user is
prompted to rewrite the original sentence
manually.

5.2 Optional Rewriting of
Grammatical Sentences

A sentence may pass the CL checker’s gram-
mar but still be considered for rewriting. As
detailed in Section 6, there are grammatical
sentences which are complex and/or ambigu-
ous, and difficult to translate accurately; for
example, long sentences with many conjoined
phrases and clauses.
rewrite a grammatical sentence to make it
clearer and less ambiguous; for example, Fig-
ure 2 illustrates how the system might intro-

It is also possible to

duce an explicit preposition in a conjoined PP
that elides the preposition in the second PP
(see the example in Section 6.1).

Input: marks on documents or scans
Readings: (or NP NP)
(NP (or PP PP))

Input: marks on documents or on scans
Readings: (NP (or PP PP))

Figure 2: Optional Rewriting

Since such sentences can be parsed by
the first pass through the Analyzer, optional
rewriting does not require a separate recov-
ery parse. The optional rewriting strategies
are implemented as syntactic transformations
on f-structures (see the example in Appendix

A).
5.3 Interactive Dialogue

Although our ultimate goal is to provide a
rewritten input automatically when a sen-
tence doesn’t conform to the controlled lan-
guage, in practice it may be difficult to se-
lect a rewrite automatically when there are
several equivalent choices available. So we
should consider making it possible for the user
to view and select from the set of available
rewrites (or best candidate rewrites, if some
scoring mechanism has been used). Figure 3

gives an example of such an interactive di-
alogue. The original input, Before working,
the engine must warms up, has been rewrit-
ten to fix two problems — the incorrect in-
flection of “warm” and the subjectless gerund
“working”. However, there are two possible
rewrites. As shown in the figure, the gapped
subject of “working” is ambiguous — the au-
thor could be referring to the reader, or the
engine. Since the system cannot resolve this
ambiguity, it decides to interact with the user
by offering both rewrites for selection.

¢ ‘Before working, the engine must warms up.’’
This sentence must be rewritten. Please
select a rewrite, or Cancel to edit your

original sentence:

1. Before you work, the engine must warm up.
2. Before it works, the engine must warm up.

Figure 3: Sample Dialogue

6 Rewriting for KANT Controlled
English

In order to examine how much rewriting is
actually necessary for a legacy document to
conform to the current KANT Controlled En-
glish, we selected about 220 sentences from a
computer peripherals manual. The selected
corpus contains more than 1000 unique lexi-
cal items. We used the KANTOO Analyzer
to parse the original sentences?. The follow-
ing summarizes the results:

1. 7% of the sentences parsed, but could be
rewritten in order to improve style or re-
duce ambiguity.

2. 22% of the sentences did not parse and
required a simple rewrite (generally to
conform to a CL restriction intended to
improve translation).

*Before parsing, we inserted SGML tags wher-
ever necessary, since the KANTOO Analyzer assumes
SGML tagging inside sentences for some constituents
such as product numbers and names.

3. 13% of the sentences were rewritten be-
cause the original sentence was unclear,
very long, or idiomatic.

4. 58% of the sentences did not require any
rewriting.

From our experiment, we found that 35%
of the sentences required rewriting in order
to parse, and 7% parsed but could be option-
ally rewritten. Among these sentences, 113
instances of different phenomena were recog-
nized as candidates for rewriting.

6.1 Optional Rewriting

An example of the first type of sentence, those
which parse but could be improved to reduce
ambiguity, can be seen in the following:

e Original: You may also need to clean
these parts if there are smudges
or other marks on documents or
scans of documents.

e Rewritten: You may also need to
clean these parts if there are smudges
or other marks on documents or

on scans of documents.

By inserting on before scans of documents,
the structural analysis of which conjoins
phrases smudges, other marks on documents,
and scans of documents can be avoided and
structural ambiguity can be reduced. Also,
the sentence will become more clear in mean-
ing for the human reader. This rewriting is
not required in order to parse the sentence,
but it is preferable for translation accuracy.

In order to insert on before scans of doc-
uments automatically, the analyzer needs to
detect both documents and scans of docu-
ments modify marks or smudges or other
marks and scans of documents do not con-
join with smudges or other marks. A seman-
tic analysis is required to make such deci-
sion. When domain semantic knowledge is
unavailable, an interactive dialogue with au-
thor would be initiated.

Another example of the first type of rewrit-
ing is seen in the following:

e Original: If a fax is being received while
you are printing, the fax is stored in
memory and then prints automatically
after the print job finishes.

e Rewritten: If a fax is being received
while you are printing, the fax is stored
in memory. Then, the fax prints auto-
matically after the print job finishes.

The original sentence is long but it can be
broken down into two sentences to improve
readability and reduce analysis complexity.

6.2 Simple Rewriting

Now we look at an example of second kind of
rewriting, which requires a simple rewrite, as
in the following;:

e Original: This is also known as concate-
nated dialing.

e Rewritten: This is also called concate-
nated dialing.

This is a simple replacement of known as
with called, in order to reduce syntactic am-
biguity in the KANTOO Analyzer. This can
be done with a simple pattern matching rule
and does not require a syntactic analysis and
transformation.

On the other hand, the following example
requires syntactic parsing for rewriting;:

e Original: Proofread the converted doc-
ument carefully to ensure the characters
have been correctly interpreted by the
software.

e Rewritten: Proofread the converted
document carefully in order to ensure
that the characters have been correctly

interpreted by the software.

Inserting in order to clearly indicates that
this is a purpose clause. Since proofread does
not subcategorize for an infinitival clause, it is
assumed that to ensure is an adjunct clause.
In the manual, we found that the infinitival
adjunct clause is a purpose clause in most
cases, so we automatically insert ¢n order into

the sentence. We found 11 cases in the corpus
where this rewrite applied.

Another change that we make is to insert a
complementizer, that. KANT controlled lan-
guage requires a complementizer to avoid un-
necessary ambiguity. Since ensure subcate-
gorizes for a complement clause, that will be
inserted when a sentence follows. We found 8
cases in the corpus where this rewrite applied.

Another example of the second type of
rewriting is in the following:

e Original: After sending the fax, change
this setting back to NO.

e Rewritten: After you send the fax,
change this setting back to NO.

Omitting the subject of a subordinate clause
is very common in technical writing, and it is
assumed that the omitted subject is the same
as the subject of the main clause. If this can
be assumed to be always true, we insert the
subject from the main clause. When the main
clause is imperative, we insert you as the sub-
ject in the subordinate clause. However, this
is not always appropriate:

e Original: Send an electronic fax while
the printer makes copies, or scan a doc-
ument while printing.

e Rewritten: Send an electronic fax while
the printer makes copies, or scan a doc-
ument while a document is printing.

In this sentence, it is better to write while
a document is printing, instead of while you
are printing. However, to handle this distinc-
tion, automatic rewriting requires more than
just a simple syntactic analysis to determine
the appropriate subject. If there is more than
one choice, the system will query authors to
choose the appropriate rewrite.

6.3 Author Rewriting

An example of the third type of rewriting is
seen in the following idiomatic expression:

e Original: Area of faded print are often
an indicator that the toner cartridge is
near the end of its toner life.

e Rewritten: Area of faded print are of-
ten an indicator that the toner cartridge
is running out of toner.

As an input to KANT machine translation,
the rewritten sentence would be better, since
it is a more direct expression that is less prone
to mis-translation.

We sometimes encounter long, complicated
sentences which are best split into two or more
sentences. An example is seen in the follow-

ing:

e Original: When you are scanning an
item and choose Scan on the Scan Assis-
tant or in the Scan Pro software, select
the Scan to Text option, and click Start
Scan, the Scan Pro software initiates the
scan using the best settings for text.

e Rewritten: When you are scanning an
item, choose Scan on the Scan Assistant
or in the Scan Pro software, select the
Scan to Text option, and click Start Scan.
The Scan Pro software initiates the scan
by using the best settings for the text.

The original sentence is not well-formed En-
glish, and can be broken down into two sen-
tences to make the meaning more clear.

The above examples of the third type
of rewriting are much more complicated to
rewrite automatically, and the system will
refer such sentences back to the author for
rewriting.

In the case of approved domain idioms
(which should be handled directly, not rewrit-
ten), we can enhance the grammar and lexi-
con in a straightforward manner to incorpo-
rate them into the CL.

7 Issues in Automatic Rewriting

In this section, we are going to discuss some
issues related to rewriting design, controlled
language rewriting and post-editing.

7.1 Rewriting Design Issues

Although the rewriting algorithm represents
a fairly simple extension of the current KAN-
TOO CL Checker control flow, there are sev-
eral design issues which must be explored:

e Delerminism in Applying Surface Pat-

terns. If we have a system with n sur-
face patterns, a question arises regarding
how to apply them to the input and how
to handle the result. Should we prefer
sequential ordering, where we try each
pattern one after the other to see which
ones match? If so, then what sequential
ordering of patterns is correct? We may
also consider trying all the patterns in
parallel, assuming that only one pattern
should be tried at a time. Although this
choice would remove the need to choose
a sequential ordering of patterns a priori,
we are left with the necessity to choose
among several possible rewrites.

Determinism in Applying Syntactic
Transformations. If we have a recovery
parse with more than one recovered
constituent, is the rewriting process
sensitive to the ordering of the trans-
formations? In a bottom-up parser, we
can assume that recovery of lower-order
constituents is performed before parsing
of higher-level constituents, so any re-
sulting transformations must be carried
out from bottom to top.

Automaltic Selection of Rewriles. Our
rewriting algorithm has the ability to
find more than one rewrite for a par-
ticular sentence through recovery pars-
ing and structural transformation. In
the case of automatic rewriting, where
the user is not consulted, which rewrite
should be chosen? A simple technique
would be to prefer certain types of recov-
ery over others, and to prefer recovered
analyses which use the fewest number of
rewrite steps. Using these two metrics,
we could score the recovery analyses, par-
tition them into equivalence classes based
on score, and select from the analyses
with the best score. In the absence of a
scoring mechanism, we could use a statis-
tical language model (SLM) to score the
rewritten sentences (to pick the one that
is most likely to be a corrent sentence in
that language). However, it will proba-

bly be difficult to obtain a large enough
corpus to build a useful SLM in technical
domains with limited text resources.

e Halting Problem. Since the rewriting en-
gine can create new inputs and send them
back to the KANTOO Analyzer, an infi-
nite loop cannot be ruled out a priori. It
is possible to write two rewrite strategies,
each of which rewrites its input to a new
sentence matched by the other. With
such rules the rewriting engine would en-
ter an infinite loop. The rewriting engine
could avoid this problem in a practical
way by either limiting its application to
user sentences only, and not to automat-
ically rewritten sentences. Or the system
could keep track of the rewriting inputs
and notice when the same sentence had
been re-submitted by the system as part
of rewriting.

7.2 Controlled Language Rewriting
Issues

The following issues should be considered
from the perspective of the controlled lan-
guage author:

e Frror Handling. It is conceivable that
the system might produce an automatic
rewrite which passes subsequent check-
ing, but contains some semantic error
(i.e., it doesn’t preserve the original
meaning intended by the author). Such
a scenario is likely to lead to translation
inaccuracies in an MT system. A conser-
vative approach might be to confirm all
rewrites with the author, to avoid this
problem; but the corresponding loss of
productivity (through increased interac-
tion) might not be justified if the fre-
quency of actual problems is quite low.
This trade-off must be examined empir-
ically by comparing a) the loss of source
and translation accuracy due to auto-
matic rewriting errors, with b) the addi-
tional time that would be required from
the author to confirm each automatic
rewrite.

10

e Degree of Automaticity. If there is more

than one rewrite, how do we decide
whether to pick one automatically, or
interact with the author? So far we
have assumed that all rewriting rules
are of equal importance and efficacy,
but in practice some rules will be fre-
quently applied and relatively “error
free”, while others may be infrequent,
dealing with complex cases, and likely
to produce errors if unconfirmed by the
author. It is likely that some heuristic
approach should be adopted, such that
some rewrites always happen automati-
cally, while others are always confirmed
by the author. This could be imple-
mented via per-rule preferences, or by
setting an overall threshold on the num-
ber and type of rewrite rules that may
be invoked before explicit confirmation is
required.

Usability Study. The impact of issues like
error handling and automaticity must be
empirically investigated, and hence re-
quire some measurement of their impact
on author productivity and system ac-
ceptance. Therefore, it will be important
to conduct a formal usability study in
a realistic authoring context. The base-
line for such a study would be the use
of a controlled language checker without
automatic rewriting. The experimental
study would add rewriting to the basic
checker, to accomplish A/B comparisons
of automatic rewriting vs. interactive di-
alogue on a variety of documents. The in-
tent is to measure the trade-offs between
various factors, including:

— Increase in author productivity (for
automatic rewriting) vs. additional
processing time (system time taken
during rewriting) and frequency of
rewriting errors;

— Increase in author dialogue (for
purely interactive rewriting) vs. an
overall increase in productivity and
reduction in rewriting errors.

The precise configuration of a rewrit-
ing system involves decisions about what
should and shouldn’t be automatic,
which in turn will depend on empirical
data from a particular domain.

7.3 Automatic Rewriting for
Post-editing

Although our paper has been concentrated
on automatic controlled language, which is a
pre-editing part of KANT machine transla-
tion, we could also apply the same algorithm
for automatic post-editing. Since KANT con-
trolled English is used for multilingual ma-
chine translation, the controlled English is not
designed to make it easier to translate a par-
ticular target language. When the MT gen-
eration module produces target sentences, we
may want to rewrite them for grammatical
as well as stylistical reasons. However, when
we encounter some target grammadtical issues,
we update the KANT MT modules, so that
we can generate correct sentences. The ques-
tion on the division of effort between M'T and
automatic post-editing is beyond the scope of
our research right now, although we recognize
that this is a question for future work.

8 Future Work

In this paper, we have presented a linguis-
tic framework and a software architecture for
automatic rewriting which is based on the
concepts of controlled language analysis and
translation investigated in earlier systems. By
making use of existing formalisms (unification
grammar and syntactic transformations), we
can implement a set of rewriting strategies
which handle both recovery of ungrammatical
sentences and optional rewriting of sentences
which are grammatical, but stylistically less
preferable.

We are currently implementing a set of
recovery rules and transformations for the
rewriting phenomena mentioned in Section
6. Once the rewriting strategies have been
implemented, we intend to carry out a user
study which examines the issues laid out in
Section 7. The extensions to the KANTOO
architecture are being implemented so that it

11

will be possible to control the degree of auto-
maticity and interaction in the system. This
will make it possible to perform various kinds
of user experiments, and also make it possible
to tune the final system based on the results
of the experiments.

Our experience with the industrial applica-
tion of controlled language for MT has shown
that an important criterion for system accep-
tance is author productivity, which is directly
related to the amount of time the author
must spend to rewrite sentences which don’t
conform to the controlled language. Contin-
ued research and development of automatic
rewriting is essential, if controlled language
systems are to achieve maximum utility in
real-world applications.

References

Baker, K., Franz, A., Jordan, P., Mitamura,
T., Nyberg, E. 1994. “Coping with Ambi-
guity in a Large-Scale Machine Translation
System”. Proceedings of the 15th Inlerna-
tional Conference on Computalional Linguis-
tics (COLING-94, pages 90-94, Kyoto, Japan.

Kamprath, C., E. Adolphson, T. Mita-
mura and E. Nyberg 1998. “Controlled Lan-
guage for Multilingual Document Produc-
tion: Experience with Caterpillar Technical
English”. Proceedings of the Second Inter-
national Workshop on Controlled Language
Applications (CLAW-98), pages 51-61, Pitts-
burgh.

Knops, U. and B. Depoortere, “Controlled
Language and Machine Translation”. Pro-
ceedings of the Second International Work-
shop on Controlled Language Applications
(CLAW-98), pages 42-50, Pittsburgh.

Mitamura, T. 1999 “Controlled Language
for Multilingual Machine Translation”. Pro-
ceedings of Machine Translation Summit VII,
pages 46-52, Singapore.

Mitamura, T., E. Nyberg, E. Torrejon and
R. Igo 1999. “Multiple Strategies for Au-
tomatic Disambiguation in Technical Trans-
lation,” Proceedings of the 8th International
Conference on Theoretlical and Methodologi-
cal Issues in Machine Translation (TMI-99),
pages 218-227, Chester, England.

Mitamura, T., Nyberg, E. and Carbonell,
J. 1991 “An Efficient Interlingua Translation
System for Multi-lingual Document Produc-
tion”. Proceedings of Machine Translation
Summat I1I, pages 55-61, Washington, DC.

Means, L. and K. Godden 1996. “The Con-
trolled Automotive Service Language (CASL)
Project”, Proceedings of the First Interna-
tional Workshop on Controlled Language Ap-
plications (CLAW-96), pages 106-114, Leu-
ven, Belgium.

Moore, C. 2000 “Controlled Language at
Diebold, Incorporated”. Proceedings of the
Third International Workshop on Controlled
Language Applications (CLAW-2000), pages
51-61, Seattle.

Nyberg, E. and T. Mitamura 1996. “Con-
trolled Language and Knowledge-Based Ma-
chine Translation: Principles and Practice”.
Proceedings of the First International Work-
shop on Conlrolled Language Applications
(CLAW-96), pages 74-83, Leuven, Belgium.

Shirai, S., S. Ikehara, A. Yokoo, and Y.
Ooyama 1998. “Automatic Rewiting Method
for Internal Expressions in Japanese to En-
glish MT and Its Effects”. pp 62-75, Proceed-
ings of the Second International Workshop on
Controlled Language Applications (CLAW-
98), pages 62-75, Pittsburgh.

Tomita, M. and E. Nyberg 1988. “Gen-
eration Kit and Transformation Kit Version
3.2: User’s Manual”, Technical Report CMU-
CMT-88-MEMO, Center for Machine Trans-
lation, Carnegie Mellon University.

Wojcik, R., H. Holmback and J. Hoard
1998. “Boeing Technical English: An Ex-
tension of AECMA SE beyond the Aircraft
Maintenance Domain”. Proceedings of the
Second International Workshop on Controlled
Language Applications (CLAW-98), pages
114-123, Pittsburgh.

Appendix A: Sample
Transformation

Figure 4 illustrates a single structural trans-
formation that is used to insert an explicit
(distributed) preposition when a preposition
appears with a conjoined NP as object (see
Section 5.2). In KANTOO, tranformations

are implemented using a rule formalism called
PATRICK, which is a variation on the struc-
tural transformations (based on unification
grammar) that were introduced in (Tomita &
Nyberg, 1988).

The example contains a single trans-
formation rule and a stored procedure,
make-conjoined-pp. The rule will fire on
any f-structure that matches the first three
unification statements: any f-structure whose
category is prep, is simple (not a conjunction
of PPs), and contains a conjoined NP object.

The unification statements which follow
create a new f-structure which is a conjoined
prepositional phrase.

(xTRY*

; See if we have a single prep
; with conjoined object.
((h(fs cat) =c prep)
(%(fs conj) = *UNDEFINED*)
(%(fs obj conj) = *DEFINED*)

; Make a new FS which is a
; conjoined prep
(%new-fs = % (fs obj))
(% (new-fs root) <= "conj-pp")
(% (new-fs tokens) =
(*MULT* % (fs tokens)
%(fs obj tokens)))

; Make the conjoined PP’s
(% (new-fs member) <=
#make-conjoined-pp ((pp %fs)))

; Replace fs with new-fs
(%fs <= Ynew-£fs))
)

; For each object in Yfs,
; creates a pp w/ tail recursion

#make-conjoined-pp %fs
((xTRY*
((*NOT* #is-mult
%(fs obj member))
(%(fs obj) <= %(fs obj member))
(*TEST* %fs))
((%kpp <= %fs)
(%(pp obj) = *REMOVE%)
(%(pp obj) < %(fs obj member))
(*TEST* (*#MULT* %pp #make-conjoined-pp %fs)))
))

Figure 4: Structural Transformation:
Preposition Insertion

