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To God.



This job has been given to me to do.
Therefore, it is a gift.
Therefore, it is a privilege.
Therefore, it is an offering I may make to God.
Therefore, it is to be done gladly, if it is done for Him.
Here, not somewhere else, I may learn God’s way.
In this job, not in some other, God looks for faithfulness.

Elisabeth Elliot



Abstract

Translation into severely low-resource languages has both the cultural goal
of saving and reviving those languages and the humanitarian goal of assisting
the everyday needs of local communities that are accelerated by the recent
COVID-19 pandemic. In many humanitarian efforts, translation into severely
low-resource languages often does not require a universal translation engine, but
a dedicated text-specific translation engine. For example, healthcare records,
hygienic procedures, government communication, emergency procedures and
religious texts are all limited texts. While generic translation engines for all
languages do not exist, translation of multilingually known limited texts into new,
low-resource languages may be possible and reduce human translation effort.
We attempt to leverage translation resources from rich-resource languages to
efficiently produce best possible translation quality for well known texts, which
are available in multiple languages, in a new, low-resource language.

To achieve this efficiency, we translate a closed text that is known in ad-
vance and available in multiple source languages into a new and low-resource
language. Despite the challenges of little data and few human experts, we build
methods to promote cross-lingual transfer, leverage paraphrase diversity, ad-
dress the variable-binding problem, measure language similarity, build efficient
active learning algorithms for learning seed sentences, activate knowledge in
large pretrained models and produce quality translation with as small as a few
hundreds lines of low-resource data. Working with extremely small data, we
demonstrate that it is possible to produce useful translations for machines to
work alongside human translators to expedite the translation process, which is
exactly the goal of this thesis.

To reach this goal, we argue that in translating a closed text into low-
resource languages, generalization to out-of-domain texts is not necessary, but
generalization to new languages is. Performance gain comes from massive source
parallelism by careful choice of close-by language families, style-consistent corpus-
level paraphrases within the same language and strategic adaptation of existing
large pretrained multilingual models to the domain first and then to the language.
Such performance gain makes it possible for machine translation systems to
collaborate with human translators to expedite the translation process into new,
low-resource languages.



Acknowledgments

Many thanks to my advisor and all my committee members and mentors
who has helped me grow over the years. This thesis is completed through much
help and support from our scientific community that I am deeply grateful to.

I would like to thank my advisor Alex Waibel. Alex is an insightful researcher,
an experienced entrepreneur and a proficient writer. I am grateful that he shares
my research goal. Alex has generously funded the entire work, has helped me
with academic writing and has purchased multiple machines for our research
over the years. His support is pivotal in this thesis.

I am thankful to my committee members and my collaborators, Alon Lavie,
Graham Neubig, Jan Niehues, Matthias Sperber, and Mark Bean. I am deeply
grateful to Alon’s sharing of wisdom on growing scientific career on Machine
Translation evaluation, Graham’s help with learning time management and
prioritization skills, Jan’s insights in prioritizing on key results in paper writing,
Matthias’ consistent support and Mark’s expertise in Quechuan languages.

I am deeply grateful to the support of Carolyn Rosé and Jamie Callan. Both
of them share wisdom and strengthen me to grow and mature in research. I will
pass on their kindness and wisdom to others.

We stand on the shoulder of giants, and I would like to thank all brilliant
minds in the fields who help me grow over the years. I want to thank Ramayya
Krishnan, Tom Mitchell, Alan Black, Rita Singh, Lori Levin, Uri Alon, David
Mortensen, Rema Padman, Rahul Telang, Brian K. Kovak, David Choi, Steven
Shreve, Larry Wassermann and many others for their advice and mentorship.

I am so thankful to Angela Lusk, Jonny Cagwin and Suzie Laurich-McIntyre.
They helped me learn and grow over the years. They are exemplary in their
kindness, wisdom, character, strength and their dedication to student well-being.
I want to thank Kevin Haworth, Keely Austin, Michael Laudenbach, Rose Chang,
Laura DeLuca, Elizabeth Dietrich, Leah Yacknin-Dawson, Christian Hallstein
and Jessica Hsu for improving my academic writing skills. I want to thank
Stacey Young, Mary Jo Bensasi, Jessica Majuire for their kindness and help.

Thanks to family and friends especially Christian and Shirley Hallstein, Paul
and Sharon Johnston, Krissy Geffel, Ong Ai Boon, Jimmy and Valerie Williams,
Cammie Dunaway, Linda and Fred Griffin, Shannon Libengood, Kristen Emrick,
Jessica Hsu, Abigail Holizna, Janice Turner, Bri Saleone, Michael and Denise
Danko, Jeff Bergeson, Brenda Miller, Liam Ain Levi, Jamie Ian Joel, Ryan Len
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Chapter 1

Introduction

“To have another language is to
possess a second soul.”

Charlemagne

Translation into severely low resource languages has both the
cultural goal of saving low-resource languages and the humanitarian goal of assisting

the everyday needs of local communities that are accelerated by the recent COVID-19 pan-
demic. In many humanitarian efforts, translation into severely low resource languages often
does not require a universal translation engine, but a dedicated text-specific translation
engine. For example, healthcare records, hygienic procedures, government communication,
emergency procedures and religious texts are all limited texts. Translation of limited texts
have many real-world applications. One such application is the translation of water, sanita-
tion and hygiene (WASH) guidelines to protect Indian tribal children against waterborne
diseases and more recently COVID-19 infections, introducing earthquake preparedness tech-
niques to Indonesian tribal groups living near volcanoes and delivering information to the
disabled or the elderly in low-resource language communities in Uganda [11, 201, 221, 239].
These are useful examples of translating a closed text known in advance to the severely
low-resource language. We show “wash your hands” in many languages in Figure 1.1.

While generic translation engines for all languages do not exist, translation of multilin-
gually known limited texts into new, low-resource languages may be possible and reduce
human translation effort. We attempt to leverage translation resources from rich-resource
languages to efficiently produce best possible translation quality for well known texts, which
are available in multiple languages, for a new, severely low-resource language.

To achieve better efficiency, we translate a closed text that is known in advance into a
new and severely low-resource language by leveraging massive source parallelism. In other
words, we make use of available translations in many known source languages to produce
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Figure 1.1: “Wash your hands” in world languages [81].

a good translation in severely low-resource language. The source languages may be rich-
resource, but may include other low-resource languages that have slightly more data or
human expertise.

In this problem setup, given a text that is multilingually available, we are interested in
translating it into a new, low-resource language. The problem has three unique aspects
that are different from traditional Machine Translation (MT) problems:

1. Our text is closed, not arbitrary as in traditional MT problems.
2. Our text has multiple source languages with complete text translations while tradi-

tional MT is typically single-source.
3. Our text has little to no translation in the target low-resource language, while tradi-

tional MT assumes abundant data.

1.1 Thesis Statement
Machine Translation focuses on building a practical solution for human communication
across cultures [141, 194, 229, 296]. Translation into severely low-resource languages is
ultimately an extremely small data problem. The methods that usually work in big data
settings may not work for severely low-resource scenarios. Many large and evolved models
may not perform as well as small and simple models in cases with little to no data. To
overcome this challenge of extremely small data, our focus is to build a practical text-based
Machine Translation engine that joins forces with human translators and uses minimal
resources to expedite the translation process into severely low-resource languages.
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THESIS STATEMENT In translating a multilingually known limited texts into
a new, low-resource language, we argue that generalization to out-of-domain texts is
not necessary, but generalization to new languages is necessary. Performance gain
comes from massive source parallelism through the following: 1) close-by language
families, 2) style-consistent corpus-level paraphrases within the same language,
3) carefully-constructed linguistic closeness, 4) selective choice of active learning
methods, and 5) strategic adaptation of existing large pretrained multilingual models
to the domain first and then to the language. Such performance gain makes it
possible for machine translation systems to collaborate with human translators to
expedite the translation process into new, low-resource languages.

While the industry trend is to move towards bigger models with bigger data, our approach
uses fewer languages, smaller data and minimal expert efforts. Given that expert efforts
are mostly compensated or measured by the number of translations or edits, this saves
computation power and resources. Therefore, this saves time and money, while improving
translation performance. Saving time and money helps low-resource language communities
to thrive on limited resources. Furthermore, with adequate scheduling and suitable model
training on the whole text of multiple source languages, it is possible to build a sufficiently
good translation model based on little data in a new and severely low-resource language.
This does not mean that we can build a universal interlingua using such small data as the
good translation results produced by learning about the text may not generalize to other
texts. Nevertheless, generalization to other texts is desirable but not necessary in our goal
of producing practical and high quality translation of the given closed text in our research
problem. In this thesis, instead of focusing on translating any text into any language, we
focus on the practical goal of translating a given text into a new, low-resource language.

1.2 Thesis Overview
To realize the goal of expediting the translation process of a multi-source text into new,
low-resource languages, we show an overview of the work done as part of this thesis and
how they are contributing to our main goal in Figure 1.3. Following this introduction, we
examine related existing research work in Chapter 2. After literature review, we then present
this thesis in two main parts: massively multilingual translation (Chapter 3, Chapter 4
and Chapter 5), and human machine translation (Chapter 6, Chapter 7 and Chapter 8).
We focus on a case study in Quechuan language family for applying the methods built
in this thesis to the real-world translation in Chapter 8. All these chapters contribute to
the main goal of this thesis: translation of a multilingually known limited text into a new,
low-resource language. To conclude, Chapter 9 summarizes our main contributions and
explores future research directions and opportunities in this research space.
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Figure 1.2: Quechuan language community in Peru. Photograph by Mark Bean.

We focus on two parts of this thesis: massively multilingual translation (Chapter 3,
Chapter 4 and Chapter 5), and human machine translation (Chapter 6, Chapter 7 and
Chapter 8) and give an overview of these two parts below.

• Massively multilingual translation (Part I): We examine how source parallelism
benefits translation of a given text into new, low-resource languages through multi-
lingual training. In Chapter 3, we build cross-lingual transfer both within a given
language family and also across different language families. We find that in practice,
training on two closely related language families or equivalently around ten closely
related languages is often enough for translating to a given low-resource language.
We also propose an order-preserving named entity translation mechanism to resolve
the variable binding problem and produce high quality lexiconized translations under
severely low-resource scenarios. When data of similar languages is not available, we
may leverage different translations of the same text in the same language as described
in Chapter 4. We treat paraphrases as foreign languages, and train on corpus-level
paraphrases to improve translation performance. We find that our multi-paraphrase
translation models improve performance better than multilingual models and im-
proves the sparsity issue of rare word translation as well as diversity in lexical choice.
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Figure 1.3: Overview of the work done as part of this thesis.

When paraphrase information is also not available, we may build our own linguistic
distance metric based on translation distortion, fertility and performance. In Chapter
5, we propose a method, Iteratively Pretrained Multilingual Order-preserving Lexi-
conized Transformer, to train on low-resource language data. We push the limit by
using only ∼1,000 lines (∼3.5% of the entire text) to translate the whole text and
achieve good translation performance.

• Human Machine translation (Part II): Having examined source parallelism, we
build a human machine translation workflow algorithm for machine translation sys-
tems to collaborate with human translators to expedite the process. Our proposed
human machine translation is not to replace the human translators with machine
translation systems, but instead, to get the best of both worlds as shown in Figure
1.4. In our translation process, human translators are informed by machine sentence
ranking through active learning to produce a seed corpus. Machine systems then use
this seed corpus to produce a full translation draft. Human translators post-edit the
draft, and feed new data to machines each time they finish post-editing a portion of
the text. In each iteration, machines produce better and better drafts with new data,
and human translators find it easier and faster to post-edit. Together they complete
the translation of the whole text into a severely low-resource language. We first de-
velop various active learning methods on known languages and transfer ranking to
the new, low-resource language in Chapter 6. Secondly, we activate the knowledge
of large multilingual models by proposing multilingual and multi-stage adaptations
through different training schedules in Chapter 7; we find that adapting pretrained
models to the domain and then to the low-resource language works best. Thirdly,
we aggregate scores from 115 languages to provide a universal ranking and increase
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Figure 1.4: Human machine translation process.

robustness by the relaxed memoization method. In Chapter 8, having examined both
source parallelism and human machine translation workflow, we evaluate our work in
all previous chapters by translating it into practical use in a case study in Quechuan
language family in extensive collaboration with Mark Bean and his translation group
with in-depth knowledge of various Quechuan languages. We find that machine trans-
lation performance is significantly positively correlated with language similarity. The
more connected a language is, the higher the performance. Moreover, we find that
decluttering poorly-connected languages improves translation score. Based on this
finding, we show effectiveness of our models through good results in translation into
a new, low-resource language called Sihuas Quechua.

Finally, we summarize our contributions and discuss future research opportunities in
translating into new, low-resource languages in Chapter 9.

1.3 Practical Goal Setting

Having understood the overview of this thesis, we would like to clarify the goal of this work
and how to make it practical and attainable given the real-life constraints of low-resource
languages.

In essence, our goal is to minimize human translation and post-editing efforts required to
generate a full publishable-standard translation of a given text. We aim to minimize human
translators’ efforts in both the translation process of the seed corpus sentences and the post-
editing process of the subsequent iterations. In other words, we want to make translation
and post-editing work easier and smaller for human translators through automation.
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To realize this goal, ideally we want to hire a large number of human translators, measure
and compare the resources (time and money) used to translate the same text into a target
low-resource language that does not have any translations of the text. To show that this
thesis has achieved the goal of reducing human translation efforts, optimally we need to
measure and compare time taken and money spent in two translation scenarios:

1. Baseline: total time taken and total amount of money paid when human translators
translate the text to meet publishable standards.

2. Total time taken and total amount of money paid when human translators work with
machine translation systems to translate and post-edit the text to meet publishable
standards through the human machine translation algorithm introduced in this thesis.

However, this ideal solution is unrealistic especially in large translation projects. Large
translation projects in real-life usually takes decades, if not centuries of work. For example,
in the case of Bible Translation, the average project cost of a complete written Bible is
$937,446 and the average time of completing a Bible translation with sufficient resources
is 15.8 years [142]. This is clearly not realistic and beyond the scope of this thesis.

To set more practical goals, we treat the translation process of the seed corpus and
the post-editing process of the subsequent iterations separately, and use the following two
sub-goals as the proxy sub-goals for minimizing time and money used for the translation
project:

1. To minimize human translation effort at the translation process of the seed corpus, we
optimize and minimize the amount of sentences to be used to construct seed corpus
as a proxy.

2. To minimize human post-editing process of the subsequent iterations, we maximize
the quality and utility of MT-generated translation of the full text and optimize
translation efficiency.

To understand why we choose these two sub-goals as proxies, we first need to understand
that most of the human translators are paid by the number of words they translate or
post-edit [33, 82, 288]. The rate they translate a word is different from the rate they
post-edit a word [82]. Therefore, the total human translation cost is entirely tied to the
number of translated words and post-edits human translators need to perform to meet
publishable standards. Firstly, minimizing the amount of sentences used to construct seed
corpus directly reduces the number of words human translators need to translate. Therefore,
it serves as a good proxy for minimizing human translation efforts of the seed corpus.
Secondly, maximizing translation performance of the MT-system minimizes the number
of edits required for generating a full publishable-standard translation of the given text
[25, 26, 265, 292]. Since time and money saved is directly linked with the number of edits
saved, maximizing translation performance is an appropriate proxy sub-goal for minimizing
human post-editing processes.

7



Using the proxy sub-goals, we transform our goal of minimizing human translation efforts
required to generate a full translation of the given text into two practical proxy sub-goals
as the following:

1. Optimizing and minimizing the amount of sentences used to construct seed corpus.
2. Maximizing the quality and utility of MT-generated translations of the full text and

optimizing translation efficiency.
The first sub-goal of minimizing the seed corpus serves as a proxy in Chapter 6 to

minimize the human translation efforts in the creation of the seed corpus, while the second
sub-goal of maximizing translation performance serves as a proxy in Chapter 7 to minimize
human translation efforts in the post-editing process during the subsequent iterations.

To measure translation performance, our primary automatic metric in this thesis is chrF
[230]. We choose chrF for accuracy, fluency and expressive power in morphologically-rich
languages [217]. We use the metric chrF for the beginning and the conclusion of this thesis
to motivate and summarize our main contributions of this paper. In addition to our main
evaluation metric chrF, in order to have a comprehensive understanding of each chapter,
we give a wide range of evaluation metrics to supplement our understanding of translation
performance through BLEU , characTER, COMET score, and BERTscore [231, 241, 275, 305,
317]. Moreover, we explore human evaluation methods in addition to automatic evaluation
methods. For detailed analysis, we prioritize BLEU in Massively multilingual translation
(Part I) as we mainly work with European languages while we prioritize chrF in Human
Machine translation (Part II) as we mainly work with morphologically-rich low-resource
languages. Overall, we will use our metric chrF to conclude this thesis.

1.4 Thesis in Practice
As we have discussed in the Thesis Overview, we integrate this thesis into real-world
scenarios by examining a case study in Quechuan language family in Chapter 8. This
provides practical insights in understanding how to use this thesis for practical situations.
We will discuss the case study in Quechuan language family in detail at the end of our thesis.
However, we would like to give a glimpse of this case study before we dive into the details
of the different chapters of this thesis, so that we have a more intuitive understanding of
the problem we are solving.

The Quechuan language family, also called Runasimi (“people’s language”) by local
communities, is a varied group of languages covering a wide region of Peruvian Andes in
South America, extending from Colombia, Ecuador, Peru, Bolivia to northwest Argentina
[137, 184]. Its history traces back to the Inca Empire and there is broad spectrum of
sociolinguistic diversity among Quechuan languages throughout the Spanish colonial history
of the area [77]. Many are low-resource languages.
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Figure 1.5: A practical application of this thesis in Peru. Photograph provided by Mark Bean.

We make practical use of findings of this thesis to translate into a few low-resource
languages in Quechua in Chapter 8. We provide extensive analysis to answer the following
questions:

1. Under what conditions does our method work?
2. Under what conditions does our method fail to work?
3. When it works, does it provide real help to human translators working in the field?
4. When it does not work, are there ways we can improve user experience for human

translators?
Through the extensive analysis to answer the above questions, we find that machine trans-
lation performance is significantly positively correlated with language similarity. The more
connected a language is, the better it is to translate into this language. Using this result,
we employ our thesis in practice and achieve good performance for translation into a new,
low-resource language called Sihuas Quechua. We give a glimpse of this thesis in practice
before we dive into the details of each chapter, and we will look closely at this Quechuan
case study after the detailed discussion of this thesis in Chapter 8. Through this case study,
we show a few opportunities for further research that this thesis presents.
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1.5 How to Read This Thesis
Given the overview, we aim to make this thesis accessible and inclusive to readers coming
from diverse research backgrounds for the many potential collaborative opportunities in
this research space.

Following this introduction, we give an overview of the research landscape by examining
related existing research done in the space of translation into low-resource languages in
Chapter 2. For Chapter 3 to Chapter 8, each chapter is relatively self-contained and readers
can read them not in sequence. However, we suggest to read Chapter 3 and 4 first before
Chapter 5 to gain an understanding what could be done with language closeness and why
it is important to measure language closeness when such information is not available. We
also recommend to read Chapter 6 and Chapter 7 together as most of the work in these two
chapters have previously appeared in publications together. Lastly, we recommend reading
Chapter 8 after having completed all the previous chapters as this chapter leads us from
the comfort zone of academic research to enter the real-world translation process, which is
exactly the place our work is most impactful.
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Chapter 2

Literature Review

“Every act of communication is
a miracle of translation.”

Ken Liu

To understand the existing literature in the space of translation into
low-resource languages, we focus on examining different aspects of our translation

task through related research works. We only show related works that are relevant to all
parts of this thesis in this chapter. For related works that are only relevant to a particular
chapter, we will introduce them in the specific chapter directly.

In this chapter, we show related works that are closely connected to all parts of this thesis
in three broad categories: low-resource languages, machine translation, and translation in
practice. These three categories are intricately linked to each other. Firstly, related works
in “low-resource languages” show the broader impact of empowering low-resource language
communities and facilitating information dissemination in these communities. Secondly,
related works in “Machine Translation” demonstrate the state-of-the-art tools researchers
have built that could be applied in the severely low-resource translation, including massively
multilingual translation and large pretrained multilingual models. Finally, related works in
“translation in practice” bridge the two worlds by putting MT tools into practical use of
real-world translation. More specifically, we show the related works in the areas of human
machine translation, active learning and post-editing.

Having examined related works in low-resource languages, machine translation, and
translation in practice, we conclude this chapter by introducing our research framework
that is built based on existing literature, including the toolkits we use, our core datasets
and evaluation metrics we employ.

11



2.1 Low-Resource Languages

2.1.1 Information Dissemination

Interactive Natural Language Processing (NLP) systems are classified into information
assimilation, dissemination, and dialogue [30, 238, 302, 303, 304]. Assimilation and dissem-
ination have very broad definition and our definition below assumes the reference point of
rich-resource communities and discusses them only in the context of rich and low-resource
languages. Information assimilation involves information flow from low-resource to rich-
resource language communities while information dissemination involves information flow
from rich-resource to low-resource language communities. It helps low-resource language
communities to make better-informed and autonomous decisions. Taken together, they allow
dialogue and interaction of different groups at eye level. Most research is on information
assimilation with examples span from urgent earthquake detection to infectious disease
surveillance [27, 40, 79]. Few work on dissemination is on information dissemination with
examples ranging from introducing disaster prevention techniques to delivering information
to the disabled and the elderly in low-resource language communities [1, 12, 19, 213, 328].
Information dissemination is challenging because there is little low-resource language data,
much less parallel corpus, little funding, and few human experts in training and evaluation
[12, 75]. Some low-resource languages have no formal writing systems [1, 19]. Note that
in a broader definition of dissemination, the field is largely under-researched even if the
focus is not low-resource. However, our discussion focuses largely on dissemination in the
severely low-resource scenarios.

2.1.2 Low-Resource Languages

A language is alive when many people speaks it and dies when no one speaks it. There
are ∼7,139 languages in the world, unequally distributed across the world, with drastic
differences in their number of speakers and vitality [111, 200, 219]. More than half of these
languages will die in the next 80 years [15, 81]. Though there are cases where a language
dies through war, genocide, natural disasters or infectious diseases, most languages dies
while the speakers do not; the speakers either voluntarily or are forced to speak another
mainstream language as part of the endangerment process that is deeply rooted in political,
historical, social and economical reasons [187, 283].

A language needs attention when it is spoken by enough people that it could survive
under favorable conditions but few or no children are learning it [62, 154, 313]. Such
languages may survive and thrive if they gain prestige, power and visibility [62]. Language
preservation is therefore an intricate and complex matter that invites many different views
[14, 71, 122, 166, 245].
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Figure 2.1: A native man in Peru reading translated text. Photograph by Mark Bean.

2.2 Machine Translation

2.2.1 Massively Multilingual Translation

Machine polyglotism, training machines to be proficient in many languages, is a new
paradigm of multilingual NMT [4, 6, 69, 94, 103, 117, 147, 159, 290, 323, 327]. The objective
is to translate from any of the input languages to any of the output languages [94]. Many
multilingual NMT systems involve multiple encoders and decoders [117], and it is hard to
combine attention for quadratic language pairs bypassing quadratic attention mechanisms
[94]. In multi-source scenarios, multiple encoders share a combined attention mechanism
[327]. In multi-target scenarios, every decoder handles its own attention with parameter
sharing [69]. Attention combination schemes include simple combination and hierarchical
combination [175].

Attentional Neural Machine Translation (NMT) is trained directly in an end-to-end
system and has flourished recently [178, 260, 312]. The state-of-the-art of multilingual
NMT is adding source and target language labels in training a universal model with a
single attention scheme, and Byte-Pair Encoding (BPE) is used at preprocessing stage
[117]. This method is elegant in its simplicity and its advancement in low-resource language
translation as well as zero-shot translation using pivot-based translation scheme [147].
However, these works have training data that increases quadratically with the number of
languages [69, 103], rendering training on massively parallel corpora difficult.
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2.2.2 Large Pretrained Multilingual Models
As discussed before, the state-of-the-art multilingual machine translation systems trans-
lates from many source languages to many target languages [94, 117, 147, 323, 327]. The
bottleneck in building such systems lies in the limitations of computing power, data, and
machines. The training data quadratically increase with the number of languages, rendering
training on many languages difficult. Companies equipped with vast multilingual datasets
and substantial computational capabilities have built and released some large pretrained
multilingual models for researchers to work on [181, 278]. These are very helpful for re-
searchers to build on this pretrained model to further work in multilingual translation.
M2M100, released by Facebook, is trained in 100 languages [85, 91, 254] and covers a few
low-resource languages. DeltaLM, released by Microsoft, is pre-trained in 6 TB of multi-
lingual data from CC100, CC-Net, and Wikipedia in 100 languages [185] and allows for
flexible input languages. NLLB (No Language Left Behind), released by Meta AI, is trained
on 200 languages [61]. With more advances in the future, there will be models covering
more languages.

2.2.3 Low-Resource Machine Translation
Recent advances have succeeded in building multilingual methods to translate from multiple
rich-resource languages to a new, low-resource language [94, 117, 147, 322, 323]. Many have
demonstrated good transfer learning to low-resource languages as few as ∼4,000 lines
[177, 234] and ∼1,000 lines [321] of data. Transliteration can replace parallel corpora in
translation [150]. Many use simulated low-resource languages, some use real low-resource
languages [32, 148, 306].

In addition to researching and training on extremely small data, some researchers work
on zero-shot learning [47, 48, 150, 206, 224, 225, 316]. Zero-shot translation in severely low-
resource settings exploits the massive multilingualism, cross-lingual transfer, pretraining,
iterative back-translation and freezing sub-networks [22, 52, 72, 170, 174, 177, 209, 223,
284, 308, 310]. However, zero-shot learning is volatile and unstable, and is not suitable for
tasks that requires high level of accuracy [244], which is crucial in our translation goal.
Therefore, instead of zero-shot learning, we choose to use extremely small data instead.

2.3 Translation in Practice

2.3.1 Human and Machine Translation
Machine translation began about the same time as the first computer [133, 229]. Over the
years, human translators have different reactions to machine translation advances, mixed
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with doubt or fear [141]. Some researchers study human translation taxonomy for machine to
better assist human translation and post-editing efforts [44, 66]. Human translators benefit
from machine assistance as human individual bias and translation capacity limitations are
compensated for by large-scale machine translation [37, 38, 160, 162, 173, 251]. On the other
hand, machine translation benefits from professional human translators’ context-relevant
and culturally-appropriate translation and post-editing efforts [141]. Severely low-resource
translation is a fitting ground for close human machine collaboration [44, 194, 326].

2.3.2 Active Learning

Active learning has long been used in machine translation [8, 83, 100, 107, 118, 138, 197,
262]. Random sampling and data selection through active learning has been surprisingly
powerful [55, 114, 127, 135, 152, 158, 259]. Some researchers choose to train on simpler
data with shorter sentences through curriculum learning and active learning [83, 228]. The
mathematician Donald Knuth uses the population of Menlo Park to illustrate the value of
random sampling [158]. The population of Menlo Park is approximately the same as the
number of Bible verses (∼31,000). Knuth claims that random sampling across the city is
likely to produce a better set of unbiased, reliable and independent statistical samples than
choosing people working in the same building.

There is extensive research to beat random sampling by methods based on entropy [164],
coverage and uncertainty [220, 318], clustering [100, 119], consensus [118], syntactic parsing
[197], mixture based on density and diversity [9, 72, 164], and learning to learn active
learning strategies [180].

2.3.3 Post-editing

Human post-editing helps neural MT systems to produce publishable materials [66]. Large
MT systems often have issues with under-prediction, over-prediction, repetition, mislabelled
data, and hallucination [36, 191]. The state-of-the-art MateCat Tool uses translation mem-
ories (TMs) as a reference point to search for matches, exact or approximate, of the current
TM segment for translation [93]. It successfully integrates suggestions found TMs and
helps human translators and provides a simple and useful interface for human translators
to finish the post-editing process [93]. Other tools include PET, CATaLog Online, and
iterative interfaces [17, 215, 272]. Many evaluate these tools for productivity and quality
gain [115, 116, 210, 299].

Some researchers also work on automatic post-editing to improve MT performance
through online learning approach and neural programmer-interpreter method [96, 301].
The post-editing feedback is often used to build adaptive MT systems in real time [67].
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In addition, there is also research down for confidence measure on the translations on
how much post-editing is required. One such example uses the human-targeted Translation
Edit Rate (HTER), on both the word, and the character level [270, 305].

2.4 Research Framework
After reviewing relevant literature on language revival, machine translation and translation
in practice, We introduce a few tool kits that we use in this thesis, the core datasets that
we work with, and the evaluation metrics we use.

2.4.1 Tools

We use several natural language processing and translation tools for our translation systems.
They are listed below.

1. Fairseq: a neural sequence learning framework on Pytorch for machine translation,
language modelling and other generation jobs [214]. Fairseq allows us to work with a
few large pretrained multilingual models and finetune those models to customize to
our translation tasks. Fairseq is licensed under the MIT License.

2. OpenNMT : an open-source Neural Machine Translation (NMT) system [157]. It is
very flexible with many severely low-resource languages. OpenNMT-py is the PyTorch
version of the OpenNMT project. OpenNMT/OpenNMT-py is licensed under the MIT
License.

3. Sockeye: an open-source neural machine translation framework on Pytorch [132].
Sockeye is licensed under the Apache License 2.0.

4. Googletrans: a free and simple python library for Google Translate API. This serves
as a way to partially evaluate languages that our team do not speak or cannot
find native speakers in. When we evaluate the Google’s English translation of our
system translations into low-resource languages, we are aware that the final outputs
introduce another layer of potential error from Google’s system. This is therefore used
with caution. This does not compete with automatic evaluation methods, and is not
comparable with real human qualitative evaluation, but it serves as an imperfect way
to understand the overall performance of the system. Googletrans is licensed under
the MIT License.

5. COMET : a neural framework for MT evaluation [240]. COMET offers a neural way
of training multilingual MT evaluation models that attains levels of correlation with
human evaluation for some of the rich-resource languages. COMET is licensed under
the Apache License 2.0.
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6. MT Telescope: a toolkit for comparing translations from different MT systems [241].
We use MT telescope to compare across multiple translation systems using a myriad
of metrics including COMET above. MT-Telescope is licensed under the Apache
License 2.0.

7. Compare-MT : a toolkit for comparing outputs from multiple systems for language
generation tasks including MT, summarization, dialog generation and others [207].
Compare-mt is licensed under the BSD 3-Clause “New” or “Revised” License.

8. Fast_align: a light-weight, quick, and unsupervised word aligner [78]. Fast_align is
licensed under the Apache License 2.0.

9. FastText: an open-source, free, simple framework that helps with learning text repre-
sentations and text classifiers [35, 149]. FastText is MIT-licensed.

10. SentencePiece: a light-weight and unsupervised text tokenizer and detokenizer for
neural generation systems with a fixed vocabulary size []. SentencePiece is licensed
under the Apache License 2.0.

11. Subword-nmt: a simple word segmenter [260]. This is uses in our system as an alter-
native tool to SentencePiece. Subword-nmt is licensed under the MIT License.

12. KenLM : a Language Model (LM) toolkit [128, 129]. KenLM is released mostly under
the GNU LGPL license, and is distributed under the GNU Lesser General Public
License 2.1.

13. NLTK : a natural language processing platform that works seamlessly with python
codes [31]. We use the LM from NLTK alongside KenLM above. We also use the
automatic evaluation metrics from NLTK for MT evaluation. NLTK is licensed under
the Apache License 2.0.

14. Moses: an open-source toolkit for Statistical Machine Translation (SMT) [163]. Since
we are working the severely low-resource scenario, our low-resource data is extremely
small. Statistical models which are often based in frequency of words is very helpful
in text processing. One such feature we use often in our research is truecaser, where
the first word of every sentence is normalized to its most frequent form. This prevents
a named entity at the beginning of the sentence to be lowercased. Moses is licensed
under the GNU LGPL.

15. Lang2vec: a lightweight library for querying the URIEL typological database, a care-
fully structured resource on language typology and universals [179, 188]. Though
not every low-resource language we are working on is represented by Lang2vec, it
does cover a broad set of languages. It focuses on the typology and various linguistic
features of each language. Lang2vec is licensed under Creative Commons Attribution
Share Alike 4.0 International.
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2.4.2 Data
Our main text is the Bible in multiple languages [196]. Existing research classifies world
languages into Resource 0 to 5, with 0 having the lowest resource and 5 having the highest
[148]. We choose a few target languages as severely low-resource languages, both real and
hypothetical, ranging from Resource 0 to 5. Each severely low-resource language seed corpus
contains a extremely small portion (as low as ∼3%) the text, while all other languages
have full text. Our goal is to translate the rest of the text into the severely low-resource
language.

2.4.3 Baseline Systems
In our setup we have the new, low-resource language as the target language, and we have
a few neighboring languages as the source languages that are either in the same linguistic
language family or geographically close to facilitate linguistic transfer. In effect, we have a
few source languages with full translations of the text and a new and low-resource language
that has an extremely small seed corpus. We use the state-of-the-art multilingual machine
translation systems including transformers prepending both source and target language
labels to each source sentence with BPE [117, 147, 165, 260]. For precise translation for all
named entities, we use an existing method of order-preserving named entity translation by
masking each named entity with ordered __NEs using a parallel multilingual lexicon table
in all available languages [311, 321]. We use BPE in our models [165, 260].

2.4.4 Automatic Evaluation
We use chrF as our main metric for introduction and conclusion of the key summary of the
contribution of this thesis [230]. We choose chrF for accuracy, fluency and expressive power
in morphologically-rich languages [217]. Additionally, we use a complete set of automatic
evaluation metrics to supplement our understanding of translation performance: chrF,
characTER, BLEU, COMET score, and BERTscore [230, 231, 241, 275, 305, 317]. For
detailed analysis, we prioritize BLEU in Massively multilingual translation (Part 1) as
we mainly work with European languages while we prioritize chrF in Human Machine
translation (Part 2) as we mainly work with morphologically-rich low-resource languages.
And we will use our overall metric chrF to conclude this thesis.
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Part I

Massively Multilingual Translation
In the first part of this thesis, we explore how source parallelism benefits translation of a

given text into new, low-resource languages through multilingual training. In Chapter 3, we
build cross-lingual transfer both within a given language family and also across different lan-
guage families. We also propose an order-preserving lexiconized machine translation model
to resolve the variable binding problem, producing high quality lexiconized translations un-
der severely low-resource scenarios. In Chapter 4, we treat paraphrases as foreign languages,
propose a multi-paraphrase translation model which trains on corpus-level paraphrases to
improve translation performance. We find that our multi-paraphrase translation models
improve performance better than multilingual models and improve the sparsity issue of rare
word translation as well as diversity in lexical choice. In Chapter 5, we build our own linguis-
tic distance metric based on translation distortion, fertility and performance. We propose
a method, Iteratively Pretrained Multilingual Order-preserving Lexiconized Transformer
(IPML), to train on the low-resource language data. We use only ∼1,000 lines (∼3.5% of
the entire text) to translate the whole text and achieve good translation performance.
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Chapter 3

Language Transfer within
and across Families

“Learning, learned people knew,
was a multilingual enterprise.”

Michael D. Gordin

Having examined closely the existing literature in space of transla-
tion into low-resource languages, we investigate intra-family and inter-family transfer

in translating a multi-source, closed text into a new, low-resource language.

3.1 Introduction
We work on translation from a rich-resource language to a low-resource language. There
is usually little low-resource language data, and much less parallel data available [12, 75].
Despite the challenges of little data and few human experts, it has many useful applications.
Applications include translating water, sanitation and hygiene (WASH) guidelines to protect
Indian tribal children against waterborne diseases, introducing earthquake preparedness
techniques to Indonesian tribal groups living near volcanoes and delivering information to
the disabled or the elderly in low-resource language communities [11, 20, 221, 239]. We show
part of the lyrics of a hand-washing song in a few low-resource languages in Table 3.2 [281].
These are useful examples of translating a closed text known in advance to the low-resource
language.

There are three main challenges. Firstly, most previous works research individual lan-
guages instead of collective families. Cross-lingual impacts and similarities are very helpful
when there is little data in low-resource languages [45, 63, 130, 211, 250, 266, 271, 289].
Secondly, most of the multilingual translation works assume the same amount of training
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Figure 3.1: A low-resource language community in Peru gathering to celebrate together. Photo-
graph by Mark Bean.

data for all languages. In the low-resource case, it is important to exploit low or partial
data in low-resource languages to produce high quality translations. The third issue is the
variable-binding problem that is common in neural systems, where “John calls Mary” is
treated the same way as “Mary calls John” [95, 109]. It is more challenging when both
“Mary” and “John” are rare words. Solving the binding problem is crucial because the mis-
takes in named entities change the meaning of the translation. It is especially challenging
in the low-resource case because many words are rare words.

Our contribution1 in addressing these issues is three-fold, extending from multi-source
multi-target attentional models. Firstly, to examine intra-family and inter-family influences,
we add source and target language family labels in training. Training on multiple families
improves BLEU scores significantly; moreover, we find training on two neighboring families
closest to the low-resource language gives reasonably good BLEU scores, and we define
neighboring families closely in Section 3.3.2. Secondly, we conduct an ablation study to
explore how generalization changes with different amounts of data and find that we only
need a small amount of low-resource language data to produce reasonably good BLEU
scores. We use full data except for the ablation study. Finally, to address the variable-
binding problem, we build a parallel lexicon table across twenty-three European languages
and devise a novel order-preserving named entity translation method. Our method works in

1The material in this chapter was originally published as “Massively Parallel Cross-Lingual Learning in
Low-Resource Target Language Translation” in WMT, 2018 [322].
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Figure 3.2: An example of a hand-washing song that is translated into a few languages [281].

translation of any text with a fixed set of named entities known in advance. Our methods
work best when we require high accuracy and when there are many long sentences and
out-of-vocabulary words, including many words that only occur once (hapax legomenon)
[145, 192]. Our goal is to minimize manual labor, but not to fully automate the manual
process to ensure the correct translation of named entities and their ordering.

3.2 Related Work

3.2.1 Sub-word Level Machine Translation

Many MT systems lack robustness with out-of-vocabulary words (OOV s) [312]. Most
OOV s are treated as unknowns ($UNK s) uniformly, even though they are semantically
important and different [178, 260]. To tackle the OOV problem, researchers work on byte-
level [103] and character-level models [54, 178]. Many character-level models do not work
as well as word-level models, and do not produce optimal alignments [285]. As a result,
many researchers shift to sub-word level modeling between character-level and word-level.
Many uses BPE which iteratively learns subword units and balances sequence length and
expressiveness with robustness [260].

3.2.2 Lexiconized Machine Translation

Many work with lexicons and named entities in MT [13, 208, 307]. Some create a separate
character-level named entity model and mark all named entities as $TERM s to train [307].
This method learns people’s names well but does not improve BLEU scores [307]. It is time-
consuming and adds to the system complexity. Others build lexicon translation seamlessly
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Families Languages

Germanic German (de) Danish (dn) Dutch (dt) Norwegian (no) Swedish (sw) English (en)
Slavic Croatian (cr) Czech (cz) Polish (po) Russian (ru) Ukrainian (ur) Bulgarian (bg)
Romance Spanish (es) French (fr) Italian (it) Portuguese (po) Romanian (ro)
Albanian Albanian (ab)
Hellenic Greek (gk)
Italic Latin (ln) [descendants: Romance languages]
Uralic Finnish (fn) Hungarian (hg)
Celtic Welsh (ws)

Table 3.1: Language families. Language codes are in parentheses.

with attentional MT by using an affine transformation of attentional weights [13, 208].
Some embed crosslingual lexicons into the same vector space for transfer [76].

3.3 Translation System

3.3.1 Baseline Translation System

Our baseline is multi-source multi-target attentional model within one language family
through adding source and target language labels with a single unified attentional scheme,
with BPE used at the preprocessing stage. The source and target vocabulary are not shared.

3.3.2 Proposed Extensions

We present our methods in solving three issues relevant to translation into low-resource
language as our proposed extensions.

Language Families and Cross-lingual Learning

Cross-lingual and cross-cultural influences and similarities are important in linguistics
[45, 63, 130, 172, 211, 250, 266, 271, 289]. The English word, “Beleaguer” originates from
the Dutch word “belegeren”; “fidget” originates from the Nordic word “fikja”. English
and Dutch belong to the same family and their proximity has effect on each other [124,
246]. Furthermore, languages that do not belong to the same family affect each other too
[10, 250, 289]. “Somatic” stems from the Greek word “soma”; “広告” (Japanese), “광
고”(Korean), “Quảng cáo”(Vietnamese) are closely related to the Traditional Chinese word
“廣告”. Indeed, many cross-lingual similarities are present.
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Language German Danish Dutch English Norwegian Swedish

German N.A. 37.5 43.4 45.1 41.1 35.8
Danish 39.0 N.A. 37.1 41.1 42.6 37.4
Dutch 43.5 36.3 N.A. 45.1 39.0 34.3
English 40.4 34.5 41.1 N.A. 37.1 34.0
Norwegian 40.5 42.7 40.4 42.8 N.A. 40.6
Swedish 39.4 38.9 37.5 40.4 43.0 N.A.

Table 3.2: (Baseline model) Germanic family multi-source multi-target translation. Each row
represents source, each column represents target.

In this work, we use the language phylogenetic tree as the measure of closeness of languages
and language families [222]. The distance measure of language families is the collective
of all of the component languages. Language families that are next to each other in the
language phylogenetic tree are treated as neighboring families in our work, like Germanic
family and Romance family. In our discussion, we will often refer to closely related families
in the language phylogenetic tree as neighboring families.

We prepend the source and target family labels, in addition to the source and target
language labels to the source sentence to increase translation performance. For example, all
French-to-English translation pairs are prepended with four labels, the source and target
family labels (__opt_family_src_romance __opt_family_tgt_germanic) and the source
and target languages labels (__opt_src_fr __opt_tgt_en). In Section 3.4, we examine
intra-family and inter-family effects more closely.

Ablation Study on Target Training data

To achieve high information transfer from rich-resource language to low-resource target
language, we would like to find out how much target training data is needed to produce
reasonably good performance. We vary the amount of low-resource training data to examine
how to achieve reasonably good BLEU score using limited low-resource data. In the era
of Statistical Machine Translation (SMT), researchers have worked on data sampling and
sorting measures [16, 83].

To rigorously determine how much low-resource target language is needed for reasonably
good results, we do a range of control experiments by drawing samples from the low-resource
language data randomly with replacement and duplicate them if necessary to ensure all
experiments carry the same number of training sentences. We keep the amount of training
data in rich-resource languages the same, and vary the amount of training data in low-
resource language to conduct rigorous control experiments. Our data selection process is
different from prior research in that only the low-resource training data is reduced, simu-
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lating the real world scenario of having little data in low-resource language. By comparing
results from control experiments, we determine how much low-resource data is needed.

Order-preserving Lexiconized Model

The variable-binding problem is an inherent issue in connectionist architectures [95, 109].
“John calls Mary” is not equivalent to “Mary calls John”, but neural networks cannot
distinguish the two easily [95, 109]. The failure of traditional neural models to distinguish
the subject and the object of a sentence is detrimental. For example, in the narration “John
told his son Ryan to help David, the brother of Mary”, it is a serious mistake if we reverse
John and Ryan’s father-son relationships or confuse Ryan’s and David’s relationships with
Mary.

While many machine translation systems can successfully solve the Variable Binding
Problem when there is abundant training data and there are a few named entities in a
sentence, the Variable Binding Problem for severely low-resource scenarios remains very
relevant even today due to the following reasons. Firstly, when there are many occurrences
of hapax legomenon in a text, meaning when there are many words that only appear in the
text once, it is almost impossible to translate an unseen named entity that never appears
in the training data but appears in the test data. In the Bible, for instance, there are
∼1,480 words that only occur once. These words are very hard to translate. Additionally,
if a text contains extremely long sentences with many rare named entities, it is hard for
MT systems to translate all names correctly even if they appear in the training data. For
example, the Bible dataset contain many sentences that are extremely long and has more
than 10 named entities with an order that is very meaningful and cannot be mistranslated.
Therefore, the Variable Binding Problem for severely low-resource languages is still relevant
today. A successful solution to the Variable Binding Problem for low-resource languages is
very useful when we aim for high accuracy when we translate long sentences with many
unseen words, among which many only occur in the text once and never appear in the
training data.

Variable Binding Problem is still relevant for hapax legomena, which are words that only
appear in the text once. This means that a name may never appear in the training data,
and only appear once in test data. the Bible has more than 2000 named entities that are
hapaxes.

In our work, we focus mainly on text with a fixed set of named entities known in advance.
We assume that experts help to translate a given list of named entities into low-resource
language first before attempting to translate any text. Under this assumption, we propose
an order-preserving named entity translation mechanism. Our solution is to first create a
parallel lexicon table for all twenty-three European languages using a seed English lexicon
table and fast-aligning it with the rest [78]. Instead of using $UNK s to replace the named
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Figure 3.3: Intra-family and inter-family effects on BLEU scores with respect to increasing addition
of language families.

entities, we use $NEs to distinguish them from the other unknowns. We also sequentially
tag named entities in a sentence as $NE1, $NE2, . . . , to preserve their ordering. For every
sentence pair in the multilingual training, we build a target named entity decoding dictionary
by using all target lexicons from our lexicon table that matches with those appeared in
the source sentence. During the evaluation stage, we replace all the numbered $NEs using
the target named entity decoding dictionary to present our final translation. This method
improves translation accuracy greatly and preserves the order.

As a result of our contribution, the experts only need to translate a few lexicons and a
small amount of low-resource text before passing the task to our system to obtain good
results. Post-editing and minor changes may be required to achieve 100% accuracy before
the releasing the translation to the low-resource language communities.

3.4 Experiments
Having examined our baseline translation system and the proposed extensions, we are ready
to discuss our experimental setups and premises.
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Figure 3.4: Effects of adding family labels on BLEU scores with respect to increasing addition of
language families.

Our main goal is translating a multilingually known limited text into a new, low-resource
language. There are three premises in our research that differ from traditional MT work:

1. Our text is closed, not arbitrary as in traditional MT problems.
2. Our text has multiple source languages with complete text translations while tradi-

tional MT is typically single-source.
3. Our text has little to no translation in the target low-resource language, while tradi-

tional MT assumes abundant data.
With these three premises, we build a multilingual model2 from scratch3, exclusively

on limited massively multilingual data, in translation into a new, low-resource language.
Training across all language pairs is done jointly to maximize interlingual transfer.

2In Chapter 5-9, all multilingual models are multilingual transformer-based. In Chapter 3-4, all models
are multilingual LSTM-based model. This is because our research in Chapter 3-4 is done before transformer
comes about.

3We train these models from scratch because we want to assume severely low-resource situation where
there is no additional resource except for a little data from the low-resource language. Since all models are
trained in one stage, there is no need to finetune. Results from this chapter serve as a baseline for Chapter
6-9 where we use multi-stage adaptation using large pretrained models.
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Thus, we explore interlingual transfer strategies within and across language families in
extremely low-training-data setups. Our ablation study aims to find out how to minimize
the low-resource training data to achieve sufficiently good performance; our interlingual
transfer studies the transfer within and across language families; and our ordered named
entities translation mechanism aim to produce highly accurate named entity translations
even when such words do not appear in the training data.

3.4.1 Data

We choose the Bible corpus as a test ground for our proposed extensions because the Bible
is the most translated text that exists and is freely accessible. Though it has limitations,
it has fewer copyright issues like most of literary works that are translated into many
languages do. The Bible provides massively parallel high-quality translations into many
severely low-resource languages and is rapidly growing in language coverage. There are many
research works done using the Bible [18, 23, 46, 51, 74, 196, 203, 242, 252]. Unlike many
past research works where only New Testament is used [74], we use both Old Testament and
New Testament in our Bible corpus. We align all Bible verses across different languages.

We train our proposed model on twenty-three European languages across eight families on
a parallel Bible corpus. For our purpose, we treat Swedish as our hypothetical low-resource
target language, English as our rich-resource language in the single-source single-target
case and all other Germanic languages as our rich-resource languages in the multi-source
multi-target case.

Firstly, we present our data and training parameters. Secondly, we add family tags in
different configurations of language families showing intra-family and inter-family effects.
Thirdly, we conduct an ablation study and plot the generalization curves by varying the
amount of training data in Swedish, and we show that training on one fifth of the data give
reasonably good BLEU scores. Lastly, we devise an order-preserving lexicon translation
method by building a parallel lexicon table across twenty-three European languages and
tagging named entities in order.

3.4.2 Training Parameters

We clean and align the Bible in twenty-three European languages in Table 3.1. We randomly
sample the training, validation and test sets according to the 0.75, 0.15, 0.10 ratio. Our
training set contains 23K verses, but is massively parallel. In our control experiments, we also
use the experiment training on the WMT’14 French-English dataset together with French
and English Bibles to compare with our results. Note that our WMT baseline contains
French and English Bibles in addition to the WMT’14 data, and is used to contrast our
results with the effect of increasing data.
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Experiment S G GS GR 3F 8F

de2sw 4.0 35.8 42.0 42.2 42.5 42.8
dn2sw 16.9 37.4 43.4 41.8 42.7 41.7
dt2sw 4.8 34.3 41.4 41.6 42.8 42.5
en2sw 6.9 34.0 40.3 40.2 41.8 42.1
no2sw 16.8 40.6 43.6 44.0 44.5 43.1

Table 3.3: Inter-family and intra-family effects on BLEU scores with respect to increasing addition
of language families.
S: single-source single-target model.
G: training on Germanic family.
GS: training on Germanic, Slavic family.
GR: training on Germanic, Romance family.
3F: training on Germanic, Slavic, Romance family.
8F: training on all 8 European families together.

In all our experiments, we use a minibatch size of 64, dropout rate of 0.3, 4 RNN layers of
size 1000, a word vector size of 600, learning rate of 0.8 across all LSTM-based multilingual
experiments. For single-source single-target translation, we use 2 RNN layers of size 500,
a word vector size of 500, and learning rate of 1.0. All learning rates are decaying at the
rate of 0.7 if the validation score is not improving or it is past epoch 9. We use SGD as our
learning algorithm. We build our code based on OpenNMT [157]. For the ablation study,
we train on BLEU scores directly until the Generalization Loss (GL) exceeds a threshold
of α = 0.1 [233]. GL at epoch t is defined as GL(t) = 100(1 − Et

val

Et
opt

), modified by us to suit
our objective using BLEU scores [233]. Et

val is the validation score at epoch t and Et
opt is

the optimal score up to epoch t. We evaluate our models using both BLEU scores [217]
and qualitative evaluation.

3.5 Results
Having understood our data, training parameters and experimental setup, we investigate
our results from three perspectives: interlingual transfer within and across families, ablation
study and order-preserving lexiconized translation.

3.5.1 Interlingual Transfer Within and Across
Families

We first investigate intra-family and inter-family influences and the effects of adding family
labels. We use full training data in this subsection.
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Experiment S G GSl GRl 3Fl 8Fl

de2sw 4.0 35.8 41.8 42.2 42.5 44.3
dn2sw 16.9 37.4 43.0 41.5 42.5 42.8
dt2sw 4.8 34.3 41.4 41.8 42.7 42.3
en2sw 6.9 34.0 40.9 40.4 41.7 43.9
no2sw 16.8 40.6 43.7 44.3 44.2 44.7

Table 3.4: Effects of adding family labels on BLEU scores with respect to increasing addition of
language families.
S and G: same as in Table 3.3.
GSl: Germanic, Slavic family with family labels.
GRl: Germanic, Romance family with family labels.
3Fl: Germanic, Slavic, Romance family with family labels.
8Fl: all 8 European families together with family labels

Languages have varying closeness to each other: Single-source single-target transla-
tions of different languages in Germanic family to Swedish show huge differences in BLEU
scores as shown in Table 3.3. These differences are well aligned with the multi-source
multi-target results. Norwegian-Swedish and Danish-Swedish translations have much higher
BLEU scores than the rest. This hints that Norwegian and Danish are closer to Swedish
than the rest in the neural representation.

Multi-source multi-target translation improves greatly from single-source sin-
gle-target translation: English-Swedish single-source single-target translation gives a
low BLEU score of 6.9 as shown in Table 3.3, which is understandable as our dataset is
very small. BLEU score for English-Swedish translation improves greatly to 34.0 in the
multi-source multi-target model training on Germanic family as shown in Table 3.2. In
this work, we treat the Germanic multi-source multi-target model as our baseline model.
We present only relevant columns important for cross-lingual learning and translation into
low-resource language here.

Adding languages from other families into training improves translation qual-
ity within each family greatly: English-Swedish translation’s BLEU score improves
significantly from 34.0 to 40.3 training on Germanic and Slavic families, and 40.2 training
on Germanic and Romance families as shown in Table 3.3. After we add all three families in
training, BLEU score for English-Swedish translation increases further to 41.8 in Table 3.3.
Finally, after we add all eight families, BLEU score for English-Swedish translation increases
to 42.1 in Table 3.3.

A Plateau is observed after adding more than one neighboring family: A
plateau is observed when we plot Table 3.3 in Figure 3.3. The increase in BLEU scores
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Figure 3.5: Comparison of different ways of increasing training Data in French-English translation.
Family: Adding data from other languages based on the family unit
WMT’14: Adding WMT’14 data as control experiment
Sparse: Adding data from other languages that spans the eight European families

after adding two families is much milder than that of the first addition of a neighboring
family. This hints that using unlimited number of languages to train may not be necessary.

Adding family labels increases translation performance: We observe in Table 3.4
that BLEU scores for most language pairs improve with the addition of family labels.
Training on eight language families, we achieve a BLEU score of 43.9 for English-Swedish
translation, +9.9 above the Germanic baseline. Indeed, the more families we have, the more
helpful it is to distinguish them.

Training on two neighboring families nearest to the low-resource language
gives better result than training on languages that are further apart: Our ob-
servation of the plateau hints that training on two neighboring families nearest to the
low-resource language is good enough as shown in Table 3.3. Before jumping to conclusion,
we compare results of adding languages by family with that of adding languages by random
samples that span all eight families, defined as the following.
Definition 3.5.1 (Language Spanning). A set of languages spans a set of families when it
contains at least one language from each family.

In Figure 3.5, we conduct a few experiments on French-English translation using different
ways of adding training data. Let family addition describe the addition of training data
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Data 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#w 53589 107262 161332 214185 268228 322116 375439 429470 483440 538030
log#w 4.73 5.03 5.21 5.33 5.43 5.51 5.57 5.63 5.68 5.73

en2sw 25.2 30.6 32.9 32.7 34.2 34.2 33.8 33.6 34.3 34.9
de2sw 26.5 33.4 34.8 35.7 36.7 36.5 37.1 37.1 36.4 37.5
dn2sw 27.2 34.8 35.8 37.1 37.6 37.1 38.5 38.0 37.4 38.4
dt2sw 26.1 32.5 34.2 34.9 36.0 35.8 36.0 35.7 35.8 36.6
no2sw 27.7 36.9 37.9 39.5 39.4 39.2 41.3 40.8 39.2 40.5

Table 3.5: Ablation Study on Germanic Family. #w is the word count of unique sentences in
Swedish data.

through adding close-by language families based on the unit of family; let sparse addi-
tion describe the addition of training data through adding language sets that spans eight
language families. In sparse addition, languages are further apart as each may represent
a different family. We find that family addition gives better generalization than that of
sparse addition. It strengthens our earlier results that training on two families closest to
our low-resource language is a reliable way to reach good generalization.

Generalization is not merely an effect of increasing amount of data: In Figure 3.5,
we compare all methods of adding languages against a WMT’14 curve by using equivalent
amount of WMT’14 French-English data in each experiment. The WMT’14 curve serve as
our benchmark of observing the effect of increasing data, we observe that our addition of
other languages improve BLEU scores much sharply than the increase in the benchmark,
showing that our generalization is not merely an effect of increasing data. We also observe
that though increase WMT’14 data initially increases BLEU score, it reaches a plateau and
adding more WMT’14 data does not increase performance from very early point.

3.5.2 Ablation Study on Target Training Data
We use full training data from all rich-resource languages, and we vary the amount of
training data in Swedish, our low-resource language, spanning from one tenth to full length
uniformly. We duplicate the subset to ensure all training sets, though having a different
number of unique sentences, have the same number of total sentences.

Power-law relationship is observed between the performance and the amount
of training data in low-resource language: Figure 3.7 shows how BLEU scores vary
logarithmically with the number of unique sentences in the low-resource training data. It
follows a linear pattern for single-source single-target translation from English to Swedish
as shown in Figure 3.6. We also observe a linear pattern for the multi-source multi-target
case, though more uneven in Figure 3.7. The linear pattern with BLEU scores against the
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English German Czech Spanish Finnish Swedish

Joseph Joseph Jozef José Joseph Josef
Peter Petrus Petr Pedro Pietari Petrus
Zion Zion Sion Sion Zionin Sion
John Johannes Jan Juan Johannes Johannes
Egypt Ägypten Egyptské Egipto Egyptin Egyptens
Noah Noah Noé Noé Noa Noa

Table 3.6: A few examples from the parallel lexicon table.

logarithmic data shows the power-law relationship between the performance in translation
and the amount of low-resource training data. Similar power-law relationships are also
found in past research and contemporary literature [131, 291].

We find one fifth of data is enough for sufficiently good translation per-
formance: For the multi-source multi-target case, we find that using one fifth of the
low-resource training data is sufficient for good translation performance. It gives reasonably
good BLEU scores as shown in Figure 3.7. This is helpful when we have little low-resource
data. For translation into the low-resource language, experts only need to translate a small
amount of seed data before passing it to our system4.

3.5.3 Order-preserving Lexiconized Model
We devise a mechanism to build a parallel lexicon table across twenty-three European
languages using very little data and zero manual work. A few lexicon examples are shown
in Table 3.6. We first extract named entities from the English Bible [190] and combine
them with English biblically named entities from multiple sources [80, 134, 205, 243, 269].
Secondly, we carefully automate the filtering process to obtain a clean English lexicon list.
Using this list as the seed, we build a parallel lexicon table across all twenty-three languages
through fast-aligning [78]. The final parallel lexicon table has 2916 named entities. In the
translation task into low-resource language, we assume that the experts first translate these
lexicon entries, and then translate approximately one fifth random sentences before we
train our model. If necessary, the experts evaluate and correct translations before releasing
the final translations to the low-resource language community. We aim to reduce human
effort in post-editing and increase machine accuracy. After labeling named entities in each
sentence pair in order, we train and obtain good translation results.

We observe 60.6% accuracy in human evaluation where our translations are
parallel to human translations: In Table 3.8, we show some examples of machine

4Note that using nine tenth of random samples yields higher performance than using full data, but it
may not be generalized to other datasets.
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Experiment G OG OG1 OGM

de2sw 35.8 36.6 36.6 36.9
dn2sw 37.4 37.0 37.2 36.9
dt2sw 34.3 35.8 35.6 35.9
en2sw 34.0 33.6 33.9 33.4
no2sw 40.6 41.2 41.0 41.4

Table 3.7: Summary of order-preserving lexicon translation.
G: training on Germanic family without using order-preserving method.
OG: order-preserving lexicon translation.
OG1: OG translation using lexicons with frequency 1.
OGM: OG translation using lexicons with manual selection.

translated text, we also show the expected correct translations for comparison. Not only the
named entities are correctly mapped, but also the ordering of the subject and the object is
preserved. In a subset of our test set, we conduct human evaluation on 320 English-Swedish
results to rate the translations into three categories: accurate (parallel to human translation),
almost accurate (needing minor corrections) and inaccurate. More precisely, each sentence
is evaluated using three criteria: correct set of named entities, correct positioning of named
entities, and accurate meaning of overall translation. If a sentence achieves all three, then
it is termed as accurate; if either a name entity is missing or its position is wrong, then it
is termed as almost accurate (needing minor correction); if the meaning of the sentence is
entirely wrong, then it is inaccurate. Our results are 60.6% accurate, 33.8% needing minor
corrections, and 5.6% inaccurate. Though human evaluation carries bias and the sample is
small, it does give us perspective on the performance of our model.

Order-preservation performs well especially when the named entities are rare
words: In Table 3.8, the model without order-preservation lexiconized treatment performs
well when named entities are common words, but fails to predict the correct set of named
entities and their ordering when named entities are rare words. The last column shows the
number of occurrences of each named entity. For the last example, there are many named
entities that only occur in data once, which means that they never appear in training and
only appear in the test set. The model without order-preservation lexiconized treatment
predicts the wrong set of named entities with the wrong ordering. Our lexiconized order-
preserving MT model, on the contrary, performs well at both the head and tail of the
distribution, predicts the right set of named entities with the right ordering.

Prediction with longer sentences and many named entities are handled well: In
Table 3.8, we see that the model without order-preservation lexiconized treatment performs
well with short sentences and few named entities in a sentence. But as the number of the
name entities per sentence increases, especially when the name entities are rare unknowns
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Figure 3.6: Single-source single-target English-Swedish BLEU plots against increasing amount of
Swedish data.

as discussed before, normal model cannot make correct prediction of the right set of name
entities with the correct ordering in Table 3.8. Our lexiconized order-preserving model, on
the contrary, gives very high accuracy when there are many named entities in the sentence
and maintains their correct ordering.

Trimming the lexicon list that keeps the tail helps to increase BLEU scores:
Different from most of the previous lexiconized model works where BLEU scores never
increase [307], our BLEU scores show minor improvements. BLEU score for German-Swedish
translation increases from 35.8 to 36.6 in Table 3.7. As an attempt to increase our BLEU
scores even further, we conduct two more experiments. In one setting, we keep only the tail
of the lexicon table that occur in the Bible once. In another setting, we keep only a manual
selection of lexicons. Note that this is the only place where manual work is involved and is
not essential. There are minor improvements in BLEU scores in both cases.

33.8% of the translations require minor corrections: The sentence length for
these translations that require minor corrections is often longer. We notice that some have
repetitions that do not affect meaning, but need to be trimmed. Some have the under-
prediction problem where certain named entities in the source sentence never appear; in
this case, missing named entities need to be added. Some have minor issues with plurality
and tense. Typically, sentences with longer sentence length and more complicated named
entity relationships require minor corrections to achieve high translation quality.
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Figure 3.7: Multi-source multi-target Germanic-family-trained BLEU plots against increasing
amount of Swedish data.

3.6 Conclusion and Future Directions

We present our order-preserving translation system for cross-lingual learning in European
languages. We examine three issues that are important to translation into low-resource
language: the lack of low-resource data, effective cross-lingual transfer, and the variable-
binding problem.

Firstly, we add the source and the target family labels in training and examined intra-
family and inter-family effects. We find that training on multiple families, more specifically,
training on two neighboring families nearest to the low-resource language improves BLEU
scores to a reasonably good level. Secondly, we devise a rigorous ablation study and show that
we only need one fifth of the low-resource target data to produce sufficiently good translation
performance. Thirdly, to address the variable-binding problem, we build a parallel lexicon
table across twenty-three European languages and design a novel order-preserving named
entity translation method by tagging named entities in each sentence in order. We achieve
reasonably good quantitative and qualitative improvements in a preliminary study.

The order-preserving named entity translation labels named entities in order. Since there
are relatively less number of long sentences with many named entities than short sentences
with few named entities, underprediction of named entities in long sentences may occur.
To seek solution to the underprediction problem, we are looking at randomized labeling
of the named entities. Moreover, our order-preserving named entity translation method
works well with a fixed pool of named entities in any static document known in advance.
This is due to our unique use cases for applications like translating water, sanitation and
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hygiene (WASH) guidelines written in the introduction. We devise our method to ensure
high accuracy targeting translating named entities in static document known in advance.
However, researchers may need to translate dynamic document to low-resource language
in real-time. We are actively researching into the dynamic timely named entity discovery
with high accuracy.

We are actively extending our work to cover more world languages, more diverse do-
mains, and more varied sets of datasets to show our methods are generalizable. Since our
experiments shown in this work are using European languages, we are also interested on
non-European languages like Arabic, Indian, Chinese, Indonesian and many others to show
that our model is widely generalizable. We also expect to discover interesting research ideas
exploring a wider universe of linguistically dissimilar languages.

Our work is helpful for translation into low-resource language, where human translators
only need to translate a few lexicons and a partial set of data before passing it to our
system. Human translators may also be needed during post-editing before a fully accurate
translation is released. Our future goal is to minimize the human correction efforts and to
present high quality translation timely.

We would also like to work on real world low-resource tribal languages where there is
no or little training data. Translation using limited resources and data in these tribal
groups that fits with the culture-specific rules will be very important [172]. Real world
low-resource languages call for cultural-aware translation. Careful research with real world
low-resource languages will create great value and long impact for the low-resource language
communities.

One situation when we experience real-world limits is that we may have little information
of nearby languages, not to say translation of the multi-source text that is available in nearby
languages. In those situations, we still aim to make the best of all the resources that we
can find about the low-resource languages. In real-world situations, sometimes we do have
multiple translators working on the same text, producing different paraphrases of the text
in the same language, rather than in other languages. In the next chapter, we will explore
ways to leverage paraphrases within the same language for translation of a multi-source,
closed text into a new, low-resource language.
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Source Sentence Model Trans-
lation without
Order Preserva-
tion (Before)

Model Transla-
tion with Order
Preservation
(After)

Reference Frequency of
Named Entities

And Noah
fathered three
sons, Shem, Ham,
and Japheth.

Och Noa födde
tre söner, Sem,
Ham och Jafet.

Och Noa födde
tre söner, Sem
Ham och Jafet

Och Noa födde
tre söner: Sem,
Ham och Jafet.

Noah: 58, Shem:
18, Ham: 17,
Japheth: 11

And Saul spoke
to his son
Jonathan, and to
all his servants,
to kill David.

Och Saul sade
till Jonatan,
hans son, och
alla hans tjänare,
s̊a att de skulle
döda David.

Och Saul ta-
lade till sin son
Jonatan och alla
hans tjänare för
att döda David

Och Saul talade
med sin son
Jonatan och
med alla sina
tjänare om att
döda David

Saul: 424,
Jonathan: 121,
David: 1134

And they killed
Parshandatha,
and Dalphon,
and Aspatha,
and Poratha,
and Adalia,
and Aridatha,
and Parmashta,
and Arisai, and
Aridai, and Va-
jezatha,

Och de dräpte
Kedak, Ir-
Fittim, Aquila,
dörrvaktarna,
Amarja, Bered,
vidare Bet-Hadt,
Berota, Gat-
Rimmon,

Och de dräpte
Parsandata
Dalefon och
Aspata Porata
Adalja Aridata
Parmasta Arisai
Aridai Vajsata

Och Parsandata,
Dalefon, Aspata,
Porata, Adalja,
Aridata, Par-
masta, Arisai,
Aridai och Va-
jsata,

Parshandatha:
1, Dalphon: 1,
Aspatha: 1, Po-
ratha: 1, Adalia:
1, Aridatha: 1,
Parmashta: 1,
Arisai: 1, Aridai:
1, Vajezatha: 1

Table 3.8: Examples of order-preserving lexicon-aware translation for English to Swedish. The
frequency of the named entities are the number of occurrences each named entity appears in the
whole dataset; for example, all named entities in the last sentence do not appear in the training
data.
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Chapter 4

Paraphrases as Foreign
Languages

“Learning another language is
not only learning different words
for the same things, but learning
another way to think about
things.”

Flora Lewis

Having demonstrated successful language transfer within and across fam-
ilies in the translation of a multi-source text into a new, low-resource languages, we

would like to make full use of all the information that we can find in the low-resource
language.

However, we face many translation cases where there is little information or incomplete
information of nearby languages, not to mention translation of the given text in those
nearby languages. In those situations, we might have translators translating the same text
into the low-resource languages in different translating and writing styles due to quality
control reasons. Therefore, paraphrases within the same language could be a by-product
of the human translation process, and is another resource we could use for translation
into low-resource languages. In other words, we are researching situations where there is
more information in paraphrases within the same language, rather than across languages.
We would like to use this as a new angle to make full use of all existing information that
we can find in the target low-resource language. By using all information of paraphrases
within the same language, we contribute to the main thesis of translation into low-resource
languages by maximizing our use of the limited resources. In this chapter, we seek to leverage
paraphrases for translation of a multi-source text into a new, low-resource language.
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(a) Multilingual model

(b) Multi-paraphrase model

Figure 4.1: Translation Paths in (a) multilingual model (b) multi-paraphrase model. Both form
almost a complete bipartite graph.

4.1 Introduction

Paraphrases, rewordings of texts with preserved semantics, are often used to improve gen-
eralization and the sparsity issue in translation [42, 90, 101, 204, 255]. Unlike previous
works that use paraphrases at the word/phrase level, we research different translations of
the whole corpus that are consistent in structure, content, coherence and style as para-
phrases at the corpus level; we refer to paraphrases as the different translation versions
of the same corpus. We train paraphrases in the style of multilingual translation systems
[6, 69, 94, 103, 117, 147, 290, 327]. Implicit parameter sharing enables multilingual transla-
tion systems to learn across languages and achieve better generalization [147]. Training on
closely related languages are shown to improve translation [322]. We view paraphrases as
an extreme case of closely related languages and view multilingual data as paraphrases in
different languages. Paraphrases can differ randomly or systematically as each carries the
translator’s unique style.

We treat paraphrases as foreign languages, and train a unified model1 on paraphrase-
labeled data with a shared attention in the style of multilingual translation systems. Similar
to multilingual translation systems’ objective of translating from any of the N input lan-

1The material in this chapter was originally published in SRW at ACL, 2019 [323].
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Source Sentence Translation 1 Translation 2 Translation 3

My little horse must
think it queer, to stop
without a farmhouse
near, between the
woods and frozen lake,
the darkest evening of
the year. “Stopping
by woods on a snowy
evening”, Robert Frost.

我的小马该满腹狐

疑：附近没农舍，为

什么歇息, 在树林和
冰湖之间的地方，在

这一年中最暗的昏里.
Translated by An tu.

我的小马一定颇惊

讶：四望不见有什

么农家，偏是一年最

暗的黄昏，寒林和冰

湖之间停下. Trans-
lated by Guangzhong
Yu.

我的小马肯定觉得

奇怪,附近没有房子
却停下来,在林子和
结冰的湖水间,一年
中最为黑暗的夜晚.
Translated by Tiejun
Yang.

Two roads diverged in a
wood, and I– I took the
one less traveled by, and
that has made all the dif-
ference. “The road not
taken”, Robert Frost

林子里有两条路，

朝着两个方向，而

我– 我走上一条更少
人迹的路，于是带

来完全不同的一番

景象. Translated by
Ping Fang.

一片树林里分出两条

路，而我选了人迹更

少的一条，从此决

定了我一生的道路.
Translated by Zixing
Gu.

林中两路, 岔道傍
徨,我选一路, 人迹稀
疏,　人生道路, 全不
一样. Translated by
Ming Lei.

Table 4.1: Examples of parallel paraphrasing data in English-Chinese poetry translation.

guages to any of the M output languages [94], multi-paraphrase translation systems aim
to translate from any of the N input paraphrases to any of the M output paraphrases in
Figure 4.1. In Figure 4.1, we see different expressions of a host showing courtesy to a guest
to ask whether sake (a type of alcohol drink that is normally served warm in Asia) needs to
be warmed. In Table 4.8, we show a few examples of parallel paraphrasing data in the Bible
corpus. Different translators’ styles give rise to rich parallel paraphrasing data, covering
wide range of domains. In Table 4.7, we also show some paraphrasing examples from the
modern poetry dataset, which we are considering for future research.

Indeed, we go beyond the traditional MT learning of one-to-one mapping between the
source and the target text; instead, we exploit the many-to-many mappings between the
source and target text through training on paraphrases that are consistent to each other at
the corpus level. Our method achieves high translation performance and gives interesting
findings. The differences between our work and the prior works are mainly the following.

Unlike previous works that use paraphrases at the word or phrase level, we use paraphrases
at the entire corpus level to improve translation performance. We use different translations
of the whole training data consistent in structure as paraphrases of the full training data.
Unlike most of the multilingual MT works that uses data from multiple languages, we use
paraphrases as foreign languages in a single-source single-target MT system training only
on data from the source and the target languages.
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Our work is meaningful because in translation into severely low-resource languages, we
may have little information/data or incomplete information/data of nearby languages,
not to mention translation of the text in those nearby languages. In those situations, for
quality control reasons, we might have translators translating the same text into the low-
resource languages in different translating and writing styles. This process provides us with
paraphrases within the same language as a by-product of the human translation process.
Indeed, this is another resource we could use for translation into low-resource languages. In
other words, we are interested in researching into situations where there is more information
in paraphrases within the same language, rather than across languages. We would like to use
this as a new angle to make full use of all existing information that we can find in the target
low-resource language. By using all information of paraphrases within the same language,
we contribute to the main thesis of translation into low-resource languages by maximizing
our use of the limited resources. When information is scarce, paraphrases within a given
language becomes a powerful resource for increasing lexical diversity, improving sparsity
and improving translation performance. Therefore, it is meaningful to leverage paraphrases
for translation of a multi-source text into a new, low-resource language.

Additionally, our work is also meaningful in contributing findings in harnessing para-
phrases in MT as the following:

1. Our multi-paraphrase MT2 results show significant improvements in BLEU scores
over all baselines.

2. Our paraphrase-exploiting MT3 uses only two languages, the source and the target
languages, and achieves higher BLEUs than the multi-source and multi-target MT
that incorporates more languages.

3. We find that adding the source paraphrases helps better than adding the target
paraphrases.

4. We find that adding paraphrases at both the source and the target sides is better
than adding at either side.

5. We also find that adding paraphrases with additional multilingual data yields mixed
performance; its performance is better than training on language families alone, but
is worse than training on both the source and target paraphrases without language
families.

2In Chapter 5-9, all multilingual models are multilingual transformer-based. In Chapter 3-4, all models
are multilingual LSTM-based model. This is because our research in Chapter 3-4 is done before transformer
comes about.

3We train these models from scratch because we want to assume severely low-resource situation where
there is no additional resource except for a little data from the low-resource language. Though this chapter’s
main focus is on paraphrases, we make design decisions based on our goal in this thesis.
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6. Adding paraphrases improves the sparsity issue of rare word translation and diversity
in lexical choice.

4.2 Related Work

4.2.1 Paraphrasing

Many works generate and harness paraphrases [21, 39, 41, 101, 126, 186, 189, 216, 235, 276].
Some are on question and answer [70, 90], evaluation of translation [319] and translation
[204, 255]. Past research includes paraphrasing unknown words/phrases/sub-sentences [42,
89, 204, 255]. These approaches are similar in transforming the difficult sparsity problem of
rare words prediction and long sentence translation into a simpler problem with known words
and short sentence translation. It is worthwhile to contrast paraphrasing that diversifies
data, with knowledge distillation that benefits from making data more consistent [112].

Our work is different in that we exploit paraphrases at the corpus level, rather than at
the word or phrase level.

4.2.2 Multilingual Attentional Translation
Models

As discussed before, machine polyglotism which trains machines to translate any of the
N input languages to any of the M output languages is a new paradigm in multilingual
translation models [6, 69, 94, 103, 290, 327]. An interesting work is training a universal model
with a shared attention mechanism with the source and target language labels and Byte-
Pair Encoding (BPE) [117, 147]. Many multilingual translation systems involve multiple
encoders and decoders [117], and it is hard to combine attention for quadratic language
pairs bypassing quadratic attention mechanisms [94]. An interesting work is training a
universal model with a shared attention mechanism with the source and target language
labels and Byte-Pair Encoding (BPE) [117, 147]. This method is elegant in its simplicity
and its advancement in low-resource language translation and zero-shot translation using
pivot-based translation mechanism [94, 147].

Unlike previous works, our parallelism is across paraphrases, not across languages. In
other words, we achieve higher translation performance in the single-source single-target
paraphrase-exploiting MT systems than that of the multilingual MT systems.
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Figure 4.2: Examples of different ways of adding 5 paraphrases. e[?n] and f[?n] refers to different
English and French paraphrases, es refers to the Spanish (an example member of Romance family)
data. We always evaluate the translation path from f0 to e0.

4.3 Models

We have four baseline models. Two are single-source single-target attentional models, the
other two are multilingual MT models with a shared attention [117, 147]. In Figure 4.1, we
show an example of multilingual attentional MT. Translating from all 4 languages to each
other, we have 12 translation paths. For each translation path, we label the source sentence
with the source and target language tags. Translating from “你的清酒凉了吗?” to “Has
your sake turned cold?”, we label the source sentence with __opt_src_zh __opt_tgt_en.
More details are in Section 4.4.

In multi-paraphrase model, all source sentences are labeled with the paraphrase tags.
For example, in French-to-English translation, a source sentence may be tagged with
__opt_src_f1 __opt_tgt_e0, denoting that it is translating from version “f1” of French
data to version “e0” of English data. In Figure 4.1, we show 2 Japanese and 2 English
paraphrases. Translating from all 4 paraphrases to each other (N = M = 4), we have 12
translation paths as N × (N − 1) = 12. For each translation path, we label the source
sentence with the source and target paraphrase tags. For the translation path from “お
酒冷めましたよね?” to “Has your sake turned cold?”, we label the source sentence with
__opt_src_j1 __opt_tgt_e0 in Figure 4.1. Paraphrases of the same translation path carry
the same labels. Our paraphrasing data is at the corpus level, and we train a unified MT
model with a shared attention. Unlike the paraphrasing sentences in Figure 4.1, We show
this example with only one sentence, it is similar when the training data contains many
sentences. All sentences in the same paraphrase path share the same labels.
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data 1 6 11 16 22 24

WMT 22.5 30.8 29.8 30.8 29.3 -
Family 22.5 39.3 45.4 49.2 46.6 -
Vmix 22.5 44.8 50.8 53.3 55.4 57.2
Vmf - - 49.3 - - -

Table 4.2: Comparison of adding a mix of the source paraphrases and the target paraphrases
against the baselines. All acronyms including data are explained in Section 4.4.3.

Data 1 6 11 13

Vsrc 22.5 41.4 48.9 48.8
Vtgt 22.5 40.5 47.0 47.4

Table 4.3: Comparison of adding source paraphrases and adding target paraphrases. All acronyms
including data are explained in Section 4.4.3.

4.4 Experiments

4.4.1 Data
Our main data is the French-to-English Bible corpus [196], containing 12 versions of the
English Bible and 12 versions of the French Bible 4. We translate from French to English.
Since these 24 translation versions are consistent in structure, we refer to them as para-
phrases at corpus level. In our work, each paraphrase refers to each translation version of
whole Bible corpus. To understand our setup, if we use all 12 French paraphrases and all
12 English paraphrases so there are 24 paraphrases in total, i.e., N = M = 24, we have 552
translation paths because N × (N − 1) = 552.

To prepare data for this experimental setup, we clean and align 24 paraphrases of the Bible
corpus because the original corpus contains missing or extra verses for different paraphrases.
After cleaning and aligning all 24 paraphrases of the Bible corpus, we randomly sample the
training, validation and test sets according to the 0.75, 0.15, 0.10 ratio. Our training set
contains only 23K verses, but is massively parallel across paraphrases.

For all experiments, we choose a specific English corpus as e0 and a specific French corpus
as f0 which we evaluate across all experiments to ensure consistency in comparison, and we
evaluate all translation performance from f0 to e0. The reason we choose this particular

4We considered the open subtitles with different scripts of the same movie in the same language; they
covers many topics, but they are noisy and only differ in interjections. We also considered the poetry
dataset where a poem like “If” by Rudyard Kipling is translated many times, by various people into the
same language, but the data is small.
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data 6 11 16 22 24

Entropy 5.6569 5.6973 5.6980 5.7341 5.7130
Bootstrap
95% CI

(5.6564,
5.6574)

(5.6967,
5.6979)

(5.6975,
5.6986)

(5.7336,
5.7346)

(5.7125,
5.7135)

WMT - 5.7412 5.5746 5.6351 -

Table 4.4: Entropy increases with the number of paraphrase corpora in Vmix. The 95% confidence
interval is calculated via bootstrap resampling with replacement.

data 6 11 16 22 24

F1(freq1) 0.43 0.54 0.57 0.58 0.62
WMT - 0.00 0.01 0.01 -

Table 4.5: F1 score of frequency 1 bucket increases with the number of paraphrase corpora in
Vmix, showing training on paraphrases improves the sparsity at tail and the rare word problem.

language pair is because this language pair from f0 to e0 is the language pair that is part
of the multilingual baseline that we are comparing our results with. We want to have the
same language pair to ensure consistency when we compare all experiments against the
baselines. This way of evaluation is necessary for our comparison with the baselines but it
is also a limitation of our research which we will discuss at the end of this chapter.

4.4.2 Training Parameters
In all our experiments, we use a minibatch size of 64, dropout rate of 0.3, 4 RNN layers
of size 1000, a word vector size of 600, number of epochs of 13, a learning rate of 0.8 that
decays at the rate of 0.7 if the validation score is not improving or it is past epoch 9 across
all LSTM-based experiments. Byte-Pair Encoding (BPE) is used at preprocessing stage
[117]. Our code is built on OpenNMT [157] and we evaluate our models using BLEU scores
[217], entropy [264], F-measure and qualitative evaluation.

4.4.3 Baselines
We introduce a few acronyms for our four baselines to describe the experiments in Table 4.3,
Table 4.2 and Figure 4.3. Firstly, we have two single-source single-target attentional MT
models, Single and WMT. Single trains on f0 and e0 and gives a BLEU of 22.5, the
starting point for all curves in Figure 4.3. WMT adds the out-domain WMT’14 French-to-
English data on top of f0 and e0; it serves as a weak baseline that helps us to evaluate all
experiments’ performance discounting the effect of increasing data.
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Figure 4.3: BLEU plots showing the effects of different ways of adding training data in French-to-
English Translation. All acronyms including data are explained in Section 4.4.3.

Moreover, we have two multilingual baselines5 built on multilingual attentional MT,
Family and Span [322]. Family refers to the multilingual baseline by adding one language
family at a time, where on top of the French corpus f0 and the English corpus e0, we add
up to 20 other European languages. Span refers to the multilingual baseline by adding
one span at a time, where a span is a set of languages that contains at least one language
from all the families in the data; in other words, span is a sparse representation of all the
families. Both Family and Span trains on the Bible in 22 Europeans languages trained
using multilingual MT. Since Span is always sub-optimal to Family in our results, we only
show numerical results for Family in Table 4.3 and Table 4.2, and we plot both Family
and Span in Figure 4.3. The two multilingual baselines are strong baselines while the
WMT baseline is a weak baseline that helps us to evaluate all experiments’ performance
discounting the effect of increasing data. All baseline results are taken from a research work
which uses the grid of (1, 6, 11, 16, 22) for the number of languages or equivalent number
of unique sentences and we follow the same in Figure 4.3 [322]. All experiments for each
grid point carry the same number of unique sentences.

Furthermore, Vsrc refers to adding more source (English) paraphrases, and Vtgt refers
to adding more target (French) paraphrases. Vmix refers to adding both the source and
the target paraphrases. Vmf refers to combining Vmix with additional multilingual data;

5For multilingual baselines, we use the additional Bible corpus in 22 European languages that are cleaned
and aligned to each other.
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note that only Vmf, Family and Span use languages other than French and English, all
other experiments use only English and French. For the x-axis, data refers to the number
of paraphrase corpora for Vsrc, Vtgt, Vmix ; data refers to the number of languages for
Family ; data refers to and the equivalent number of unique training sentences compared
to other training curves for WMT and Vmf.

4.5 Results

Training on paraphrases gives better performance than all baselines: The transla-
tion performance of training on 22 paraphrases, i.e., 11 English paraphrases and 11 French
paraphrases, achieves a BLEU score of 55.4, which is +32.9 above the Single baseline,
+8.8 above the Family baseline, and +26.1 above the WMT baseline. Note that the Family
baseline uses the grid of (1, 6, 11, 16, 22) for number of languages, we continue to use this
grid for our results on number of paraphrases, which explains why we pick 22 as an example
here. The highest BLEU 57.2 is achieved when we train on 24 paraphrases, i.e., 12 English
paraphrases and 12 French paraphrases.

Adding the source paraphrases boosts translation performance more than
adding the target paraphrases: The translation performance of adding the source para-
phrases is higher than that of adding the target paraphrases. Adding the source paraphrases
diversifies the data, exposes the model to more rare words, and enables better generalization.
Take the experiments training on 13 paraphrases for example, training on the source (i.e.,
12 French paraphrases and the English paraphrase e0) gives a BLEU score of 48.8, which
has a gain of +1.4 over 47.4, the BLEU score of training on the target (i.e., 12 English para-
phrases and the French paraphrase f0). This suggests that adding the source paraphrases
is more effective than adding the target paraphrases.

Adding paraphrases from both sides is better than adding paraphrases from
either side: The curve of adding paraphrases from both the source and the target sides
is higher than both the curve of adding the target paraphrases and the curve of adding
the source paraphrases. Training on 11 paraphrases from both sides, i.e., a total of 22
paraphrases achieves a BLEU score of 50.8, which is +3.8 higher than that of training on
the target side only and +1.9 higher than that of training on the source side only. The
advantage of combining both sides is that we can combine paraphrases from both the source
and the target to reach 24 paraphrases in total to achieve a BLEU score of 57.2.

Adding both paraphrases and language families yields mixed performance:
We conduct one more experiment combining the source and target paraphrases together
with additional multilingual data. This is the only experiment on paraphrases where we
use multilingual data other than only French and English data. The BLEU score is 49.3,
higher than training on families alone, in fact, it is higher than training on eight European
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families altogether. However, it is lower than training on English and French paraphrases
alone. Indeed, adding paraphrases as foreign languages is effective, however, when there is
a lack of data, mixing the paraphrases with multilingual data is helpful.

Adding paraphrases increases entropy and diversity in lexical choice, and im-
proves the sparsity issue of rare words: We use bootstrap resampling and construct
95% confidence intervals for entropies [264] of all models of Vmix, i.e., models adding
paraphrases at both the source and the target sides. We find that the more paraphrases,
the higher the entropy, the more diversity in lexical choice as shown in Table 4.4. From
the word F-measure shown in Table 4.5, we find that the more paraphrases, the better the
model handles the sparsity of rare words issue. Adding paraphrases not only achieves much
higher BLEU score than the WMT baseline, but also handles the sparsity issue much better
than the WMT baseline.

Adding paraphrases helps rhetoric translation and increases expressiveness:
Qualitative evaluation shows many cases where rhetoric translation is improved by training
on diverse sets of paraphrases. In Table 4.6, Paraphrases help the model to use a more
contemporary synonym of “silver”, “money”, which is more direct and easier to understand.
Paraphrases simplifies the rhetorical or subtle expressions, for example, our model uses
“rejoice” to replace “break out into song”, a personification device of mountains to describe
joy, which captures the essence of the meaning being conveyed. However, we also observe
that the model wrongly translates “clap the palm” to “strike”. We find the quality of
rhetorical translation ties closely with the diversity of parallel paraphrases data. Indeed,
the use of paraphrases to improve rhetoric translation is a good future research question.
Please refer to the Table 4.6 for more qualitative examples.

4.6 Conclusion

We train on paraphrases as foreign languages in the style of multilingual translation systems.
Adding paraphrases improves translation quality, the rare word issue, and diversity in
lexical choice. Adding the source paraphrases helps more than adding the target ones, while
combining both boosts performance further. Adding multilingual data to paraphrases yields
mixed performance.

Having understood our main contributions in this chapter, we need to understand a
limitation of this research in our evaluation setup. Since we would like to measure how
much improvement we have achieved above the multilingual baseline where there is a
particular language pair (paraphrase pair) present, we can only choose this particular
language pair (paraphrase pair) for evaluation across all experiments. Moreover, we want
to explore using all of the existing paraphrases as alternative references in a multi-reference
evaluation manner. However, we did not choose this setup, instead we chose to use a
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particular language pair (paraphrase pair) that is part of the multilingual baseline to ensure
consistency in comparison. This is a necessary design decision, but is also a limitation to
our research. In the future, we are interested in multi-reference evaluation on top of the
existing evaluation mechanism.

A natural question one may ask is that if we have known target paraphrases available,
is there still a need to translate it in the first place? Our answer is yes. Each person’s
writing and translation style carries a unique signature, which is exactly what the machine
learns. For example, if we have a text translated for adults, and we need to paraphrase for
adolescents, the machine needs to learn the tone and style of adolescents. In this setting,
our finding is very useful for training the translation of text with a specific style, and
translation of text that is requires a specific level of formality. One may also ask, how does
our method compare with monolingual adaptation in the target language? Why do we do
multi-paraphrase training if we can just adapt on monolingual data? This is because the
nature of the low-resource scenarios in our use case. We have little to no data in the target
low-resource language. As we move to the following chapters, we will use as low as ∼600
sentences in the target language. The intention of this chapter is to contribute to the main
thesis, which is to how to address machine translation and style adaptation under severely
low-resource scenarios. Indeed, multi-paraphrase training provides better generalization and
avoids overfitting than using monolingual adaptation on severely low-resource languages.

We would like to explore the common structure and terminology consistency across
different paraphrases. Since structure and terminology are shared across paraphrases, we
are interested in building an explicit representation of the paraphrases and extending our
work for better translation, or translation with more explicit and more explainable hidden
states, which is very important in all neural systems. All of these have immeasurable
value for translation into low-resource languages. In low-resource situations, we might have
translators translating the same text into the low-resource languages in different translating
and writing styles. Paraphrases within the same language could be therefore a by-product
of human translation process, and is another resource we could use for translation into
low-resource languages. By using all information of paraphrases within the same language,
we contribute to the main thesis of translation into low-resource languages by maximizing
the use of our limited resources.

We are interested in broadening our dataset in our future experiments. In addition to
the parallel paraphrasing data as shown in the Bible corpus in Table 4.8, we also show
some paraphrasing examples from the modern poetry dataset in Table 4.7. There are very
few poems that are translated multiple times into the same language, we therefore need to
train on extremely small dataset. Rhetoric in paraphrasing is important in poetry dataset,
which again depends on the training paraphrases. The limited data issue is also relevant to
the low-resource setting.
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We would like to effectively train on an extremely small low-resource paraphrasing data.
As discussed above about the potential research poetry dataset, dataset with multiple
paraphrases is typically small and yet valuable. If we can train using extremely small
amount of data, especially in the low-resource scenario, we would exploit the power of
multi-paraphrase translation further.

Cultural-aware paraphrasing and subtle expressions are vital [169, 172]. Rhetoric in
paraphrasing is a very important tool. In Figure 4.1, “is your sake warm enough?” in Asian
culture is an implicit way of saying “would you like me to warm the sake for you?”. We
would like to model the culture-specific subtlety through multi-paraphrase training.

In this chapter and the previous chapter, we have explored ways to leverage information
in paraphrases in the same language and treat them as foreign languages, as well as nearby
languages within the same or nearby language families. However, in real-world scenarios,
information of which language is close may not be available, and information of paraphrases
within the same language might also not be available. In the next chapter, we focus on
these information-scarce situations, and we research how to make best use of the available
multi-source text, and build multiple metric spaces of language closeness statistically to
facilitate training.
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Source Sentence Machine Translation Reference

Comme de l’eau frâiche pour
une personne fatigué, Ainsi
est une bonne nouvelle venant
d’une terre lointaine.

As cold waters to a thirsty
soul, so is good news from a
distant land.

Like cold waters to a weary
soul, so is a good report from
a far country.

Lorsque tu seras invité par
quelqu’un à des noces, ne te
mets pas à la première place,
de peur qu’il n’y ait parmi les
invités une personne plus con-
sidérable que toi,

When you are invited to one
to the wedding, do not be to
the first place, lest any one be
called greater than you.

When you are invited by any-
one to wedding feasts, do not
recline at the chief seat lest
one more honorable than you
be invited by him,

Car chaque arbre se connâit à
son fruit. On ne cueille pas des
figues sur des épines, et l’on ne
vendange pas des raisins sur
des ronces.

For each tree is known by its
own fruit. For from thorns
they do not gather figs, nor
do they gather grapes from a
bramble bush.

For each tree is known from
its own fruit. For they do not
gather figs from thorns, nor
do they gather grapes from a
bramble bush.

Nous la côtoyâmes avec peine,
et nous arrivâmes à un lieu
nommé Beaux Ports, près
duquel était la ville de Lasée.

And coasting along it with dif-
ficulty, we came to a certain
place called Fair Havens, near
to which was the city of Lasea.

And coasting along it with dif-
ficulty, we came to a certain
place named Fair Havens, near
to which was a city , Lasea.

Vous tous qui avez soif, venez
aux eaux, Même celui qui n’a
pas d’argent! Venez, achetez
et mangez, Venez, achetez du
vin et du lait, sans argent, sans
rien payer!

Come, all you thirsty ones,
come to the waters; come, buy
and eat. Come, buy for wine,
and for nothing, for without
money.

Ho, everyone who thirsts,
come to the water; and he who
has no silver, come buy grain
and eat. Yes, come buy grain,
wine and milk without silver
and with no price.

Oui , vous sortirez avec joie ,
Et vous serez conduits en paix
; Les montagnes et les collines
éclateront d’allégresse devant
vous , Et tous les arbres de la
campagne battront des mains
.

When you go out with joy ,
you shall go in peace ; the
mountains shall rejoice before
you , and the trees of the field
shall strike all the trees of the
field .

For you shall go out with joy
and be led out with peace .
The mountains and the hills
shall break out into song be-
fore you , and all the trees of
the field shall clap the palm .

Table 4.6: Examples of French-to-English translation trained using 12 French paraphrases and 12
English paraphrases.
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English If you can fill the unforgiving minute with sixty seconds’ worth of dis-
tance run, yours is the Earth and everything that’s in it, and—which is
more—you’ll be a Man, my son! “if”, Rudyard Kipling.

German

Wenn du in unverzeihlicher Minute Sechzig Minuten lang verzeihen kannst:
Dein ist die Welt—und alles was darin ist— Und was noch mehr ist—dann
bist du ein Mensch! Translation by Anja Hauptmann.
Wenn du erfüllst die herzlose Minute Mit tiefstem Sinn, empfange deinen
Lohn: Dein ist die Welt mit jedem Attribute, Und mehr noch: dann bist
du ein Mensch, mein Sohn! Translation by Izzy Cartwell.
Füllst jede unerbittliche Minute Mit sechzig sinnvollen Sekunden an; Dein
ist die Erde dann mit allem Gute, Und was noch mehr, mein Sohn: Du bist
ein Mann! Translation by Lothar Sauer.

Chinese

若胸有激雷, 而能面如平湖, 则山川丘壑, 天地万物皆与尔共, 吾儿终成人
也！ Translation by Anonymous.
如果你能惜时如金利用每一分钟不可追回的光阴；那么，你的修为就会如

天地般博大，并拥有了属于自己的世界，更重要的是：孩子，你成为了真

正顶天立地之人！ Translation by Anonymous.
假如你能把每一分宝贵的光阴, 化作六十秒的奋斗—-你就拥有了整个世界,
最重要的是——你就成了一个真正的人，我的孩子！ Translation by Shan
Li.

Portuguese

Se você puder preencher o valor do inclemente minuto perdido com os
sessenta segundos ganhos numa longa corrida, sua será a Terra, junto com
tudo que nela existe, e—mais importante—você será um Homem, meu filho!
Translation by Dascomb Barddal.
Pairando numa esfera acima deste plano, Sem receares jamais que os erros
te retomem, Quando já nada houver em ti que seja humano, Alegra-te, meu
filho, então serás um homem!... Translation by Féliz Bermudes.
Se és capaz de dar, segundo por segundo, ao minuto fatal todo valor e brilho.
Tua é a Terra com tudo o que existe no mundo, e—o que ainda é muito
mais—és um Homem, meu filho! Translation by Guilherme de Almeida.

Table 4.7: Examples of parallel paraphrasing data with German, Chinese, and Portuguese para-
phrases of the English poem “If” by Rudyard Kipling.
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English

Consider the lilies, how they grow: they neither toil nor spin, yet I tell you,
even Solomon in all his glory was not arrayed like one of these. English
Standard Version.
Look how the wild flowers grow! They don’t work hard to make their clothes.
But I tell you Solomon with all his wealth wasn’t as well clothed as one of
these flowers. Contemporary English Version.
Consider how the wild flowers grow. They do not labor or spin. Yet I tell
you, not even Solomon in all his splendor was dressed like one of these. New
International Version.

French

Considérez les lis! Ils poussent sans se fatiguer à tisser des vêtements. Et
pourtant, je vous l’assure, le roi Salomon lui-même, dans toute sa gloire,
n’a jamais été aussi bien vêtu que l’un d’eux! La Bible du Semeur.
Considérez comment croissent les lis: ils ne travaillent ni ne filent; cependant
je vous dis que Salomon même, dans toute sa gloire, n’a pas été vêtu comme
l’un d’eux. Louis Segond.
Observez comment poussent les plus belles fleurs: elles ne travaillent pas et
ne tissent pas; cependant je vous dis que Salomon lui-même, dans toute sa
gloire, n’a pas eu d’aussi belles tenues que l’une d’elles. Segond 21.

Tagalog

Wariin ninyo ang mga lirio, kung paano silang nagsisilaki: hindi nangag-
papagal, o nangagsusulid man; gayon ma’y sinasabi ko sa inyo, Kahit si
Salomon man, sa buong kaluwalhatian niya, ay hindi nakapaggayak na gaya
ng isa sa mga ito. Ang Biblia 1978.
Isipin ninyo ang mga liryo kung papaano sila lumalaki. Hindi sila nagpa-
pagal o nag-iikid. Gayunman, sinasabi ko sa inyo: Maging si Solomon, sa
kaniyang buong kaluwalhatian ay hindi nadamitan ng tulad sa isa sa mga
ito. Ang Salita ng Diyos.
Tingnan ninyo ang mga bulaklak sa parang kung paano sila lumalago. Hindi
sila nagtatrabaho ni humahabi man. Ngunit sinasabi ko sa inyo, kahit si
Solomon sa kanyang karangyaan ay hindi nakapagdamit ng singganda ng
isa sa mga bulaklak na ito. Magandang Balita Biblia.

Spanish

Considerad los lirios, cómo crecen; no trabajan ni hilan; pero os digo que
ni Salomón en toda su gloria se vistió como uno de éstos. La Biblia de las
Américas.
Fíjense cómo crecen los lirios. No trabajan ni hilan; sin embargo, les digo
que ni siquiera Salomón, con todo su esplendor, se vestía como uno de ellos.
Nueva Biblia al Día.
Aprendan de las flores del campo: no trabajan para hacerse sus vestidos y,
sin embargo, les aseguro que ni el rey Salomón, con todas sus riquezas, se
vistió tan bien como ellas. Traducción en lenguaje actual.

Table 4.8: Examples of parallel paraphrasing data with English, French, Tagalog and Spanish
paraphrases in Bible translation. 56



Chapter 5

Building Language Family
with Incomplete Information

“The art of translation lies less
in knowing the other language
than in knowing your own.”

Ned Rorem

In the previous two chapters, we have carefully examined ways to make
the best use of information on nearby languages/ language families as well as different

paraphrases within the same language for our task of translation of a multi-source text into
a new, low-resource language. However, in real-world situations, such information may not
be complete. We may not have access to multiple paraphrases within the same language and
we may have limited information about which languages are close by and which language
family the target language belongs to. In such situations, we can best make use of the
existing multi-source text by statistically building metric spaces of language closeness to
predict which languages are close to the target language. We can then use the synthetic
language families that we built for multilingual training.

5.1 Introduction

2020 is the year that we started the life-saving hand washing practice globally. Applications
like translating water, sanitation, and hygiene (WASH) guidelines into severely low-resource
languages are very impactful in tribes like those in Papua New Guinea with 839 living
languages [108, 267]. Translating humanitarian texts like WASH guidelines with scarce
data and expert help is key [30].
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Figure 5.1: A Quechua-speaking community gathering in Peru. Photograph by Mark Bean.

Inspired by such applications, we translate multilingually known texts into a severely
low-resource language. In the translation process, we focus on five challenges that are not
addressed previously1. Most multilingual transformer works that translate into low-resource
language limit their training data to available data in the same or close-by language families
or the researchers’ intuitive discretion; and are mostly limited to less than 30 languages
[113, 322, 325]. Instead, we examine ways to pick useful source languages from 124 source
languages in a principled fashion. Secondly, most works require at least 4,000 lines of low-
resource data [177, 234, 322]; we use only ∼1,000 lines of low-resource data to simulate
real-life situation of having extremely small seed target translation. Thirdly, many works
use rich-resource languages as hypothetical low-resource languages. Moreover, most works
do not treat named entities separately; we add an order-preserving lexiconized component
for more accurate translation of named entities. Finally, many multilingual works present
final results as sets of translations from all source languages; we build a novel method to
combine all translations into one.

1The material in this chapter was originally published in SIGTYP at NAACL, 2021 [321].
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Eastern Pokomchi English

FAMD FAMP FAMD FAMP

Chuj* Dadibi Danish* Dutch*
Cakchiquel* Thai Norwegian* Afrikaans*
Guajajara* Gumatj Italian Norwegian*
Toba Navajo Afrikaans* German*
Myanmar Cakchiquel* Dutch* Danish*
Slovenský Kanjobal Portuguese Spanish
Latin Guajajara* French Frisian*
Ilokano Mam* German* Italian
Norwegian Kim Marshallese French
Russian Chuj* Frisian* Portuguese

Table 5.1: Top ten languages closest to Eastern Pokomchi (left) and English (right) in ranking
124 source languages. FAMD and FAMP are two constructions of Family of Choice (FAMC ) by
distortion and performance metrics respectively. All are trained on ∼1,000 lines. We star those in
Family of Origin.

We have five contributions. Firstly, we rank the 124 source languages to determine
their closeness to the low-resource language and choose the top few. We call the linguistic
definition of language family Family of Origin (FAMO), and we call the empirical definition
of higher-ranked languages using our metrics Family of Choice (FAMC). They often overlap,
but may not coincide.

Secondly, we build an Iteratively Pretrained Multilingual Order-preserving Lexiconized
Transformer (IPML) training on ∼1,000 lines of low-resource data. Using iterative pre-
training, we get a +23.9 BLEU increase over a multilingual order-preserving lexiconized
transformer baseline (MLc) using English as a hypothetical low-resource language, and a
+10.3 BLEU increase over our asymmetric baseline. Training with the low-resource language
on both the source and target sides boosts translation into the target side. Training on
1,093 lines from the book of Luke, we reach a 23.7 BLEU score testing on 30,022 lines
of Bible. We have a 42.8 BLEU score for Portuguese-English translation on the medical
EMEA dataset.

Thirdly, we use a real-life severely low-resource Mayan language, Eastern Pokomchi, a
Class 0 language [148] as one of our experiment setups. In addition, we also use English as
a hypothetical low-resource language for easy evaluation.

We also add an order-preserving lexiconized component to translate named entities
well. To solve the variable-binding problem to distinguish “Ian calls Yi” from “Yi calls
Ian” [95, 109, 322], we build a lexicon table for 2,939 Bible named entities in 124 source
languages including more than 66 severely low-resource languages.
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Finally, we combine translations from all source languages by using a novel method. For
every sentence, we find the translation that is closest to the translation cluster center. The
expected BLEU score of our combined translation is higher than translation from any of
the individual source.

5.2 Related Works

5.2.1 Multilingual Pretraining
Recent research on machine polyglotism involves training machines to be adept in many
languages by adding language labels in the training data with a single attention [94, 103,
117, 147, 323]. Some explores data symmetry [29, 97, 176]. Zero-shot translation in severely
low-resource settings exploits the massive multilinguality, cross-lingual transfer, pretraining,
iterative back-translation and freezing subnetworks [22, 52, 72, 170, 174, 177, 183, 209, 223,
284, 308, 310].

5.2.2 Linguistic Distance
To construct linguistic distances [53, 121, 212], researchers explore typological distance
[50, 60, 123, 226, 237, 277], on World Atlas of Language Structures [60], lexical distance on
the Swadesh list [139], normalized Levenshtein distance and Jaccard distance [2, 136, 261],
sonority distance [218], trade cost [144], structural distance on immigrants’ fluency [49] and
spectral distance [73].

5.3 Methodology

5.3.1 Multilingual Order-preserving Lexiconized
Transformer

Multilingual Transformer

In training, each sentence is labeled with the source and target language label. For example,
if we translate from Chuj (“ca”) to Cakchiquel (“ck”), each source sentence is tagged with
__opt_src_ca __opt_tgt_ck. A sample source sentence is “__opt_src_ca __opt_tgt_ck
Tec’b’ejec e b’a mach ex tzeyac’och Jehová yipoc e c’ool”.

We train on Geforce RTX 2080 Ti using ∼100 million parameters, a 6-layer encoder and
a 6-layer decoder that are powered by 512 hidden states, 8 attention heads, 512 word vector
size, a dropout of 0.1, an attention dropout of 0.1, 2,048 hidden transformer feed-forward
units, a batch size of 6,000, “adam” optimizer, “noam” decay method, and a label smoothing
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(a) Complete graph configuration

(b) Star graph configuration

Figure 5.2: (a) Complete graph configuration of translation paths (Many-to-many) in an exam-
ple of multilingual translation. (b) Star configuration of translation paths (Many-to-one) using
Indonesian as the low-resource example.

of 0.1 and a learning rate of 2.5 on OpenNMT [157, 298]. After 190,000 steps, we validate
based on BLEU score with early stopping patience of 5.

Star Versus Complete Configuration

We show two configurations of translation paths in Figure 5.2: star graph (multi-source
single-target) configuration and complete graph (multi-source multi-target) configuration.
The complete configuration data increases quadratically with the number of languages
while the star configuration data increases linearly.

Order-preserving Lexiconized transformer

The variable binding problem issue is difficult in severely low-resource scenario; most neural
models cannot distinguish the subject and the object of a simple sentence like “Fatma
asks her sister Wati to call Yi, the brother of Andika”, especially when all named entities
appear once or never appear in training [95, 109]. Recently, researchers use order-preserving
lexiconized Neural Machine Translation models where named entities are sequentially tagged
in a sentence as __NEs [322]. The previous example becomes “__NE0 asks her sister __NE1
to call __NE2, the brother of __NE3”.

This method works under the assumption of translating a closed text known in advance.
Its success relies on good coverage of named entities. To cover many named entities, we
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Source Sentence IPML Translation Reference

En terwyl Hy langs die see van
Galiléa loop, sien Hy Simon en
Andréas, sy broer, besig om ’n net
in die see uit te gooi; want hulle
was vissers.

And as He drew near to the lake
of Galilee, He Simon saw Andrew,
and his brother, lying in the lake,
for they were fishermen.

And walking along beside the Sea
of Galilee, He saw Simon and his
brother Andrew casting a small
net in the sea; for they were fish-
ers.

En toe Hy daarvandaan ’n bietjie
verder gaan, sien Hy Jakobus, die
seun van Sebedéüs, en Johannes,
sy broer, wat besig was om die
nette in die skuit heel te maak.

And being in a distance, He saw
James, the son of Zebedee, and
John, his brother. who kept the
nets in the boat.

And going forward from there a
little, He saw James the son of
Zebedee, and his brother John.
And they were in the boat mend-
ing the nets.

En verder Jakobus, die seun van
Sebedéüs, en Johannes, die broer
van Jakobus- aan hulle het Hy
die bynaam Boanérges gegee, dit
is, seuns van die donder-

And James the son of Zebedee,
and John the brother of James;
and He gave to them the name,
which is called Boanerges, being
of the voice.

And on James the son of Zebedee,
and John the brother of James,
He put on them the names Boan-
erges, which is, Sons of Thunder.

Table 5.2: Examples of Iteratively Pretrained Multilingual Order-preserving Lexiconized Trans-
former (IPML) translation from Afrikaans to English using FAMP. We train on only 1,093 lines
of English data.

build on existing research literature [311, 322] to construct a massively parallel lexicon table
that covers 2,939 named entities across 124 languages in our Bible database. Our lexicon
table is an expansion of the existing literature that covers 1,129 named entities [311]. We
add in 1,810 named entities that are in the extreme end of the tail occurring only once. We
also include 66 more real-life severely low-resource languages.

For every sentence pair, we build a target named entity decoding dictionary by using
all target lexicons from the lexicon table that match with those in the source sentence. In
severely low-resource setting, our sequence tagging is larged based on dictionary look-up;
we also include lexicons that are not in the dictionary but have small edit distances with the
source lexicons. In evaluation, we replace all the ordered __NEs using the target decoding
dictionary to obtain our final translation.

Let us translate “Fatma asks her sister Wati to call Yi, the brother of Andika” to Chinese
and German. Our tagged source sentence that translates to Chinese is “__opt_src_en
__opt_tgt_zh __NE0 asks her sister __NE1 to call __NE2, the brother of __NE3”; and we
use __opt_tgt_de for German. The source dictionary is “__NE0: Fatma, __NE1: Wati,
__NE2: Yi, __NE3: Andika” and we create the target dictionaries. The Chinese output is
“__NE0叫她的姐妹__NE1去打电话给__NE3的兄弟__NE2” and the German output is “__NE0
bittet ihre Schwester __NE1 darum, __NE2, den Bruder __NE3, anzurufen”. We decode the
named entities to get final translations.
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5.3.2 Ranking Source Languages

Existing works on translation from multiple source languages into a single low-resource
language usually have at most 30 source languages [113, 322, 325]. They are limited within
the same or close-by language families, or those with available data, or those chosen based
on the researchers’ intuitive discretion. However, the set of related languages chosen as
source languages under such scenarios could be incomplete. Instead, we examine ways to
pick useful source languages in a principled fashion motivated by cross-lingual impacts and
similarities [45, 63, 130, 211, 250, 266, 271, 289]. We find that using many languages that
are distant to the target low-resource language may produce marginal improvements, if
not negative impact. Indeed, existing literature on zero-shot translation also suffers from
the limitation of linguistic distance between the source languages and the target language
[170, 177, 223]. We therefore rank and select the top few source languages that are closer
to the target low-resource language using the two metrics below.

We rank source languages according to their closeness to the low-resource language. We
construct the Family of Choice (FAMC) by comparing different ways of ranking linguistic
distances empirically based on the small low-resource data.

To rank linguistic distances empirically based on the small low-resource data, we propose
two different ways to construct FAMCs: one by distortion, the other by fertility. Distortion
represents the amount of rearrangement work that needs to be done if we were to have a
word-by-word translation of the source sentence. Fertility of a source word represents the
number of target words produced by that source word. Ideally, if two languages are very
close, we expect to see a one-on-one mapping between source and target words. Moreover,
we also expect to do minimal rearrangement work if two languages are close. Therefore,
at a higher level of understanding, we aim to rank languages by how high its probability
of distortion equalling zero and fertility equalling one is. The higher the probability a
source language has, the closer this source language is to the target language. With this
understanding, let us explain the mathematical formulation of our distortion-based and
fertility-based similarity measures in the following.

Let Ss and St be the source and target sentences, let Ls be the source length, let P (St =
st|ss, ls) be the alignment probability, let Fs be the fertility of how many target words
a source word is aligned to, let Dt be the distortion based on the fixed distance-based
reordering model [161].

We first construct a word-replacement model based on aligning the small amount of
target low-resource data with that of each source language using fast_align [78]. We
replace every source word with the most probable target word according to the product
of the alignment probability and the probability of fertility equalling one and distortion
equalling zero P (Fs = 1, Dt = 0|st, ss, ls). We choose a simple word-replacement model
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because we aim to work with around 1,000 lines of low-resource data. For fast and efficient
ranking on such small data, a word-replacement model suits our purpose.

We use two alternatives to create our FAMCs. Our distortion measure is the probability of
distortion equalling zero, P (Dt = 0|st, ss, ls), aggregated over all words in a source language.
We use the distortion measure to rank the source languages and obtain the distortion-based
FAMC (FAMD); we use the translation BLEU scores of the word-replacement model as
another alternative to build the performance-based FAMC (FAMP). In Table 5.1, we list
the top ten languages in FAMD and FAMP for Eastern Pokomchi and English. We use
both alternatives to build FAMCs.

To prepare for transformer training, we choose the top ten languages neighboring our
target low-resource language in FAMD and FAMP. We choose ten because existing literature
shows that training with ten languages from two neighboring language families is sufficient
in producing quality translation through cross-lingual transfer [322]. Since for some low-
resource languages, there may not be ten languages in FAMO in our database, we add
languages from neighboring families to make an expanded list denoted by FAMO+.

5.3.3 Iterative Pretraining

Having ranked similar languages to the low-resource language, we choose a suitable set of
source languages for training to translate into the low-resource language. For training pur-
poses, we propose two stages of pretraining using multilingual order-preserving lexiconized
transformers on the complete and the star configuration. We design iterative pretraining
on symmetric data to address catastrophic forgetting that is common in training [98, 156].
The word “iterative” refers to the multi-stage pretraining that is focused on the com-
plete configuration on all source languages first followed by adding the target low-resource
language. Each stage of pretraining has symmetric data for optimization. We propose iter-
ative pretraining to promote data symmetry, address catastrophic forgetting, and increase
robustness.

Stage 1: Pretraining on Neighbors

Firstly, we pretrain on the complete graph configuration of translation paths using the top
ten languages neighboring our target low-resource language in FAMD, FAMP, and FAMO+

respectively. Low-resource data is excluded in training.
We use the multilingual order-preserving lexiconized transformer. Our vocabulary is the

combination of the vocabulary for the top ten languages together with the low-resource
vocabulary built from the ∼1,000 lines. The final model can translate from any of the ten
languages to each other.
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Source Sentence IPML Translation Reference

Ket idi limmabas iti dinna ti
baybay ti Galilea, nakitana ni
Simon ken ni Andres a cab-
satna, nga iwaywayatda ti iket
iti baybay; ta dumadaclisda
idi.

Eh noq ojik i rub'an i Jesús
juntar i k'isa palaw i Galilea,
xrilow reje i Simón ruch'ihil
i Andres, re' i rutuut i k'isa
palaw, ruum jinaj i k'isa palaw
barco.

Noq k'ahchi' rik'iik i Jesús chi
chii' i k'isa palaw ar Galilea,
xrilow reje wach i Simón ruch'ihil
i ruchaaq', Andres rub'ihnaal. Re'
keh aj karineel taqe, k'ahchi' kiku-
tum qohoq i kiya'l pan palaw.

Ket idi nagna pay bassit naki-
tana ni Santiago nga anac
ni Zebedeo ken ni Juan
a cabsatna, nga addada idi
iti barangayda, a tartarimaa-
nenda dagiti iketda.

Eh noq ojik i rub'an i Jesús,
xrilow i Jacobo, re' i Jacobo
rak'uun i Zebedeo, re' Juan
rub'ihnaal, ruch'ihil taqe i raj
tahqaneel. eh xkikoj wo' wach
chinaah i k'isa palaw.

Eh junk'aam-oq chik i xb'ehik
reje i Jesús, xrilow kiwach i ki'ib'
chi winaq kichaaq' kiib', re' Ja-
cobo, re' Juan, rak'uun taqe i
Zebedeo. Eh wilkeeb' chupaam
jinaj i barco, k'ahchi' kik'ojem
wach i kiya'l b'amb'al kar.

Ket immasideg ni Jesus ket
iniggamanna iti imana ket
pinatacderna; ket pinanawan
ti gorigor , ket nagservi
cadacuada.

Eh re' Jesús xujil i koq riib',
xutz'a'j i koq chinaah i q'ab'.
eh re' i kaq tz'a' chi riij. eh
jumehq'iil xwuktik johtoq, re'
chik i reh xutoq'aa' cho yej-
anik kiwa'.

Eh re' i Jesús xujil i koq riib'
ruuk' i yowaab', xuchop chi q'ab',
xruksaj johtoq, eh jumehq'iil
xik'ik i tz'a' chi riij. Eh re' chik i
reh xutoq'aa' cho yej-anik kiwa'.

Table 5.3: Examples of Iteratively Pretrained Multilingual Order-preserving Lexiconized Trans-
former (IPML) translation from Ilokano to Eastern Pokomchi using FAMD. We train on only
1,086 lines of Eastern Pokomchi data.

Stage 2: Adding Low-Resource Data

We include the low-resource data in the second stage of training. Since the low-resource
data covers ∼ 3.5% of the text while all the source languages cover the whole text, the data
is highly asymmetric. To create symmetric data, we align the low-resource data with the
subset of data from all source languages. As a result, all source languages in the second stage
of training have ∼ 3.5% of the text that is aligned with the low-resource data. We therefore
create a complete graph configuration of training paths using all the eleven languages.

Using the pretrained model from the previous stage, we train on the complete graph
configuration of translation paths from all eleven languages including our low-resource
language. The vocabulary used is the same as before. We employ the multilingual order-
preserving lexiconized transformer for pretraining. The final model can translate from any
of the eleven languages to each other.
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Source Sentence IPML Translation Reference

Caso detecte efeitos graves ou
outros efeitos não mencionados
neste folheto, informe o médico
veterinário.

If you notice any side effects or
other side effects not mentioned
in this leaflet, please inform the
vétérinaire.

If you notice any serious effects
or other effects not mentioned in
this leaflet, please inform your
veterinarian.

No tratamento de Bovinos com
mais de 250 Kg de peso vivo, di-
vidir a dose de forma a não ad-
ministrar mais de 10 ml por local
de injecção.

In the treatment of infants with
more than 250 kg in vivo body
weight, a the dose to not exceed
10 ml per injection.

For treatment of cattle over 250
kg body weight, divide the dose
so that no more than 10 ml are
injected at one site.

No entanto, uma vez que é
possível a ocorrência de efeitos
secundários, qualquer tratamento
que exceda as 1-2 semanas deve
ser administrado sob supervisão
veterinária regular.

However, because any of side ef-
fects is possible, any treatment
that 1-5 weeks should be admin-
istered under regular supraveg-
here.

However, since side effects might
occur, any treatment exceeding
1–2 weeks should be under regu-
lar veterinary supervision.

Table 5.4: Examples of IPML translation on medical EMEA dataset from Portuguese to English
using FAMO+.

5.3.4 Final Training
Finally, we focus on translating into the low-resource language. We use the symmetric
data built from the second stage of pretraining. However, instead of using the complete
configuration, we use the star configuration of translation paths from the all source languages
to the low-resource language. All languages have ∼ 3.5% of the text.

Using the pretrained model from the second stage, we employ the multilingual order-
preserving lexiconized transformer on the star graph configuration. We use the same vocab-
ulary as before. The final trained model can translate from any of the ten source languages
to the low-resource language. Using the lexicon dictionaries, we decode the named entities
and obtain our final translations.

5.3.5 Combination of Translations
We have multiple translations, one per each source language. Combining all translations is
useful for both potential post-editing works and systematic comparison of different experi-
ments especially when the sets of the source languages differ.

Our combination method assumes that we have the same text in all source languages.
For each sentence, we form a cluster of translations from all source languages into the
low-resource language. Our goal is to find the translation that is closest to the center of
the cluster. We rank all translations according to how centered this translation is with
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respect to other sentences by summing all its similarities to the rest. The highest score is
the closest to the cluster center. We take the most centered translation for each sentence
and output our combined result. The expected BLEU score of our combined translation is
higher than translation from any of the individual source language.

5.4 Data

We use the Bible dataset and the medical EMEA dataset [196, 286]. EMEA dataset is from
the European Medicines Agency and contains a lot of medical information that may be
beneficial to the low-resource communities. Our method can be applied to other datasets
like WASH guidelines.

For the Bible dataset, we use 124 source languages with 31,103 lines of data and a target
low-resource language with ∼1,000 lines (∼3.5%) of data. We have two setups for the
target low-resource language. One uses Eastern Pokomchi, a Mayan language; the other
uses English as a hypothetical low-resource language 2. We train on only ∼1,000 lines of
low-resource data from the book of Luke and test on the 678 lines from the book of Mark.
Mark is topically similar to Luke, but is written by a different author. For the first stage of
pretraining, we use 80%, 10%, 10% split for training, validation and testing. For the second
stage onwards, we use 95%, 5% split of Luke for training and validation, and 100% of Mark
for testing.

Eastern Pokomchi is Mayan, and English is Germanic. Since our database does not have
ten members of each family, we use FAMO+, the expanded version of FAMO. For English,
we include five Germanic languages and five Romance languages in FAMO+; for Eastern
Pokomchi, we include five Mayan languages and five Amerindian languages in FAMO+.
The Amerindian family is broadly believed to be close to the Mayan family by the linguistic
community.

We construct FAMCs by comparing different ways of ranking linguistic distances empiri-
cally based on ∼1,000 lines of training data. In Table 5.1, we list the top ten languages for
Eastern Pokomchi and English in FAMD and FAMP respectively.

To imitate the real-life situation of having small seed target translation data, we choose
to use ∼1,000 lines (∼3.5%) of low-resource data. We also include Eastern Pokomchi in
addition to using English as a hypothetical low-resource language. Though data size can
be constrained to mimic severely low-resource scenarios, much implicit information is still
used for the hypothetical low-resource language that is actually rich-resource. For example,
implicit information like English is Germanic is often used. For real low-resource scenarios,

2In Table 5.1 and Table 5.7, Kanjobal is Eastern Kanjobal, Mam is Northern Mam, Cuzco is Cuzco
Quechua, Ayacucho is Ayacucho Quechua, Bolivian is South Bolivian Quechua, and Huallaga is Huallaga
Quechua.
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Experiments IPML MLc MLs PMLc PMLs AML

Pretrained ✓ ✓ ✓

Iterative ✓

Lexiconized ✓ ✓ ✓ ✓ ✓ ✓

Symmetrical ✓ ✓ ✓ ✓ ✓

Star ✓ ✓ ✓

Complete ✓ ✓ ✓ ✓

Combined 37.3 13.4 14.7 34.7 35.7 27.0

German 35.0 11.6 12.3 33.3 34.5 25.4
Danish 36.0 12.5 12.4 33.3 34.2 26.2
Dutch 35.6 11.5 11.1 32.3 33.7 25.0
Norwegian 35.7 12.3 12.0 33.2 34.1 25.8
Swedish 34.5 11.8 12.4 32.3 33.4 24.9
Spanish 36.4 11.7 11.8 34.1 35.0 26.2
French 35.3 10.8 10.8 33.1 34.0 25.8
Italian 35.9 11.7 11.7 34.3 34.5 26.1
Portuguese 31.5 9.6 10.1 30.0 30.4 23.1
Romanian 34.6 11.3 12.1 32.3 33.2 25.0

Table 5.5: Comparing our iteratively pretrained multilingual order-preserving lexiconized trans-
former (IPML) with the baselines training on 1,093 lines of English data in FAMO+. We checkmark
the key components used in each experiments and explain all the baselines in details in Section
5.5.

the family information may have yet to be determined; the neighboring languages may be
unknown or incomplete, and if they are known, they are highly likely to be low-resource
too. We thus use Eastern Pokomchi as our real-life severely low resource language.

To understand Eastern Pokomchi, it is a Mayan language that is morphological rich,
ergative and agglutinative [5, 56]. It has been isolated from other languages historically
and is seen by many as non-transparent, complex and obscure [86].

In addition to the Bible dataset, we work with the medical EMEA dataset [286]. Using
English as a hypothetical language, we train on randomly sampled 1,093 lines, and test on
678 lines of data. Since there are only 9 languages in Germanic and Romance families in
EMEA dataset, we include a slavic language Polish in our FAMO+ for experiments.

The EMEA dataset is less than ideal comparing with the Bible dataset. The Bible
dataset contains the same text for all source languages; however, the EMEA dataset does
not contain the same text. It is built from similar documents but has different parallel data
for each language pair. Therefore, during test time, we do not combine the translations
from various source languages in the EMEA dataset.
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Figure 5.3: Comparing our method with different baselines for translation into English as a
hypothetical low-resource language using ∼1,000 lines of data.

5.5 Results

We summarize our results in Figure 5.3 and we show our result is generalizable to medical
domains by looking at EMEA datasets which we will focus on at the end of the results
section.

In Figure 5.3, we compare our iteratively pretrained multilingual order-preserving lexi-
conized transformer (IPML) with five baselines in Table 5.5. MLc is a baseline model of
multilingual order-preserving lexiconized transformer training on complete configuration; in
other words, we skip the first stage of pretraining and train on the second stage in Section
5.3.3 only. MLs is a baseline model of multilingual order-preserving lexiconized transformer
training on star configuration; in other words, we skip both steps of pretraining and train
on the final stage in Section 5.3.4 only. PMLc is a baseline model of pretrained multilingual
order-preserving lexiconized transformer training on complete configuration; in other words,
we skip the final stage of training after completing both stages of pretraining. PMLs is a
baseline model of pretrained multilingual order-preserving lexiconized transformer training
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Source BLEU Source BLEU Source BLEU

Combined 37.3 Combined 38.3 Combined 39.4

German 35.0 German 36.7 German 37.6
Danish 36.0 Danish 37.1 Danish 37.5
Dutch 35.6 Dutch 35.6 Dutch 36.7
Norwegian 35.7 Norwegian 36.9 Norwegian 37.1
Swedish 34.5 Afrikaans 38.3 Afrikaans 39.3
Spanish 36.4 Marshallese 34.7 Spanish 38.4
French 35.3 French 36.0 French 36.6
Italian 35.9 Italian 36.9 Italian 37.7
Portuguese 31.5 Portuguese 32.9 Portuguese 33.1
Romanian 34.6 Frisian 36.1 Frisian 36.9

Table 5.6: Performance of Iteratively Pretrained Multilingual Order-preserving Lexiconized Trans-
former (IPML) training for English on FAMO+, FAMD and FAMP. We train on only 1,093 lines
of English data.

on star configuration; in other words, after the first stage of pretraining, we skip the second
stage of pretraining and proceed to the final training directly. Finally, AML is a baseline
model of multilingual order-preserving lexiconized transformer on asymmetric data. We
replicate the ∼1,000 lines of the low-resource data till it matches the training size of other
source languages; we train on the complete graph configuration using eleven languages.
Though the number of low-resource training lines is the same as others, information is
highly asymmetric.

Pretraining is key as IPML beats the two baselines that skip pretraining in Table 5.5.
Using English as a hypothetical low-resource language training on FAMO+, combined trans-
lation improves from 13.4 (MLc) and 14.7 (MLs) to 37.3 (IPML) with iterative pretraining.
Training with the low-resource language on both the source and the target sides boosts
translation into the target side. Star configuration has a slight advantage over complete
configuration as it gives priority to translation into the low-resource language. Iterative
pretraining with BLEU score 37.3 has an edge over one stage of pretraining with scores
34.7 (PMLc) and 35.7 (PMLs).

All three pretrained models on symmetric data, IPML, PMLc and PMLs, beat asymmetric
baseline AML. In Table 5.5, IPML has a +10.3 BLEU increase over our asymmetric baseline
on combined translation using English as a hypothetical low-resource language training on
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Source BLEU Source BLEU Source BLEU

Combined 23.0 Combined 23.1 Combined 22.2

Chuj 21.8 Chuj 21.9 Chuj 21.6
Cakchiquel 22.2 Cakchiquel 22.1 Cakchiquel 21.3
Guajajara 19.7 Guajajara 19.1 Guajajara 18.8
Mam 22.2 Russian 22.2 Mam 21.7
Kanjobal 21.9 Toba 21.9 Kanjobal 21.4
Cuzco 22.3 Myanmar 19.1 Thai 21.8
Ayacucho 21.6 Slovenský 22.1 Dadibi 19.8
Bolivian 22.2 Latin 21.9 Gumatj 19.1
Huallaga 22.2 Ilokano 22.5 Navajo 21.3
Aymara 21.5 Norwegian 22.6 Kim 21.5

Table 5.7: Performance of Iteratively Pretrained Multilingual Order-preserving Lexiconized Trans-
former (IPML) training for Eastern Pokomchi on FAMO+, FAMD and FAMP. We train on only
1,086 lines of Eastern Pokomchi data.

FAMO+. All four use the same amount of data, but differ in training strategies and data
configuration. In severely low-resource scenarios, effective training strategies on symmetric
data improve translation greatly.

We show IPML results training on different sets of source languages in FAMO+, FAMD,
and FAMP, for English and Eastern Pokomchi in Table 5.6 and 5.7. FAMP performs the
best for translation into English while both FAMP and FAMD outperforms FAMO+ as
shown in Table 5.6. FAMD performs best for translation into Eastern Pokomchi as shown
in Table 5.7. Afrikaans has the highest score for English’s FAMD and FAMP, outperforming
Dutch, German or French. A reason may be that Afrikaans is the youngest language in the
Germanic family with many lexical and syntactic borrowings from English and multiple
close neighbors of English [108].

Note that we are not focusing on comparing FAMO+ with FAMCs, our focus is what we
could do to boost translation performance when there is incomplete information of which
languages are close to our given low-resource language. When language family information
is limited or incomplete, i.e., when FAMO+ is limited or incomplete, constructing FAMC
to determine neighbors is very useful in translation.

Comparing Eastern Pokomchi results with English results, we see that translation into
real-life severely low-resource languages is more difficult than translation into hypothetical
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Source BLEU

Combined N.A.

German 34.8
Danish 37.7
Dutch 39.7
Swedish 37.7
Spanish 42.8
French 41.6
Italian 39.2
Portuguese 42.8
Romanian 40.0
Polish 34.1

Table 5.8: IPML Performance on the EMEA
dataset trained on only 1,093 lines of English
data.

Source BLEU

Combined 23.7

German 21.6
Danish 22.9
Dutch 21.2
Norwegian 21.3
Swedish 19.9
Spanish 22.9
French 22.3
Italian 21.8
Portuguese 20.7
Romanian 16.3

Table 5.9: IPML Performance on the entire
Bible excluding ∼1k lines of training and
validation data.

ones. The combined score is 38.3 for English in Table 5.6 and 23.1 for Eastern Pokomchi on
FAMD in Table 5.7. Eastern Pokomchi has ejective consonants which makes tokenization
process difficult. It is agglutinative, morphologically rich and ergative just like Basque
[5, 56]. It is complex, unique and nontransparent to the outsider [86]. Indeed, translation
into real severely low-resource languages is difficult.

We are curious of how our model trained on ∼1,000 lines of data performs on the rest of
the Bible. In other words, we would like to know how IPML performs if we train on ∼3.5%
of the Bible and test on ∼96.5% of the Bible. In Table 5.9, training on 1,093 lines from the
book of Luke, we achieve a BLEU score of 23.7 for IPML using FAMP in English 3.

We show qualitative examples in Table 5.2 and 5.3. The source content is translated well
overall and there are a few places for improvement in Table 5.2. The words “fishermen” and
“fishers” are paraphrases of the same concept. IPML predicts the correct concept though it
is penalized by BLEU.

Infusing the order-preserving lexiconized component to our training greatly improves
qualitative evaluation. But it does not affect BLEU much as BLEU has its limitations
in severely low-resource scenarios. This is why all experiments include the lexiconized
component in training. The BLEU comparison in our paper also applies to the comparison
of all experiments without the order-preserving lexiconized component. This is important in
real-life situations when a low-resource lexicon list is not available, or has to be invented. For

3A previous version of this work shows higher BLEU scores with random sampling. Since active learning
is not the focus of this section, we show all results training on the book of Luke in this paper. For further
results in active learning, please refer to our follow-up work in the next section [320].
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example, a person growing up in a local village in Papua New Guinea may have met many
people named “Bosai” or “Kaura”, but may have never met a person named “Matthew”,
and we may need to create a lexicon word in the low-resource language for “Matthew”
possibly through phonetics.

We also see good results with the medical EMEA dataset. Treating English as a hypo-
thetical low-resource language, we train on only 1,093 lines of English data. For Portuguese-
English translation, we obtain a BLEU score of 42.8 while the rest of languages all obtain
BLEU scores above 34 in Table 5.8 and Table 5.4. In Table 5.4, we see that our translation is
very good, though a few words are carried from the source language including “vétérinaire”.
This is mainly because our ∼1,000 lines contain very small vocabulary; however, by carrying
the source word over, key information is preserved.

5.6 Conclusion
We use ∼1,000 lines of low-resource data to translate a closed text that is known in
advance to a severely low-resource language by leveraging massive source parallelism. We
present two metrics to rank the 124 source languages and construct FAMCs. We build an
iteratively pretrained multilingual order-preserving lexiconized transformer and combine
translations from all source languages into one by using our centric measure. Moreover, we
add a multilingual order-preserving lexiconized component to translate the named entities
accurately. We build a massively parallel lexicon table for 2,939 Bible named entities in
124 source languages, covering more than 66 severely low-resource languages. Our good
result for the medical EMEA dataset shows that our method is useful for other datasets
and applications.

Our final result can also serve as a ranking measure for linguistic distances though it
is much more expensive in terms of time and resources. In the future, we would like to
explore more metrics that are fast and efficient in ranking linguistic distances to the severely
low-resource language.

Having examined ways to build linguistic measure and build metric spaces of language
closeness that are suitable for multilingual training, when language family information
is not complete, we have established a proven way to train multilingual models for the
translation task of a multi-source text into a new, low-resource language. We have shown
success translating the whole text using about 1,000 lines of training data as our seed
corpus. Our next question is, what is the optimal 1,000 lines to produce as seed corpus to
optimize machine translation performance? In other words, is there a way to use active
learning to determine the most effective way to build seed corpus to optimize for machine
translation? This is what we would like to address in the next chapter.
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Part II

Human Machine Translation
Having examined source parallelism in the first part of the thesis (Chapter 3, Chapter

4 and Chapter 5), we build a human machine translation workflow algorithm for machine
translation systems to collaborate with human translators to expedite the translation
process of a multi-source text into new, low-resource languages (Chapter 6, Chapter 7
and Chapter 8). Our proposed human machine translation is not to replace the human
translators with machine translation systems, but instead, to get the best of both worlds
and to expedite the translation process. In our translation process, human translators are
informed by machine sentence ranking through active learning to produce a seed corpus.
Machine systems then use this seed corpus to produce a full translation draft. Human
translators post-edit the draft, and feed new data to machines each time they finish post-
editing a portion of the text. In each iteration, machines produce better and better drafts
with new data, and human translators find it easier and faster to post-edit. Together they
complete the translation of the whole text into an severely low-resource language.

In Chapter 6, we first develop various active learning methods on known languages and
transfer ranking to the new, low-resource language. In Chapter 7, we activate the knowl-
edge of large multilingual models by proposing multilingual and multi-stage adaptations
through different training schedules; we find that adapting pretrained models to the domain
and then to the low-resource language works best. Thirdly, we aggregate scores from 115
languages to provide a universal ranking and increase robustness by the relaxed memoiza-
tion method. Having examined both source parallelism and human machine translation
workflow, we evaluate our work in all previous chapters by translating academic progress to
the real-world translation process in a case study in Quechuan language family in Chapter
8. We collaborate extensively with a translation group with in-depth knowledge of various
Quechuan languages and focus on evaluation. We find that machine translation perfor-
mance is significantly positively correlated with language similarity. The more connected
a language is, the easier it is to translate into it. In addition, we find that decluttering
poorly-connected languages improves translation score. Using this finding, we achieve good
results in translating into a new, low-resource language called Sihuas Quechua.
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Chapter 6

Active Learning for Building
a Seed Corpus

“Tell me and I forget.
Teach me and I remember.
Involve me and I learn.”

Benjamin Franklin

Having examined interlingual transfer both within and across different
language families, paraphrases within the same language, and the thorough way of

building linguistic measure and building metric spaces of language closeness, we have
established a proven way to use a small seed corpus (around 1,000 lines of low-resource
language data) to complete our translation task of translating a multi-source text into a new,
low-resource language. In this chapter, we examine the optimal way to build seed corpus
to best help with machine translation. We incorporate active learning to learn sentence
ranking in the low-resource language and inform human translators which set of sentences
to translate first, in order to produce the most effective and useful seed corpus.

6.1 Introduction

Machine translation has flourished ever since the first computer was made [133, 229]. Over
the years, human translation is assisted by machine translation to remove human bias and
translation capacity limitations [37, 38, 160, 162, 173, 251]. By learning human translation
taxonomy and post-editing styles, machine translation borrows many ideas from human
translation to improve performance through active learning [44, 66, 262]. As discussed in
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Figure 6.1: Translation workflow for severely low-resource languages.

Chapter 1, we propose a workflow1 to bring human translation and machine translation
to work together seamlessly in translation of a closed text into a severely low-resource
language as shown in Figure 6.1 and Figure 6.2 and Algorithm 1. With our human machine
translation framework, we are interested in translating a given text that has many existing
translations in different languages into a severely low-resource language well.

In this translation framework, human translators are informed by machine data selection
process through active learning to produce a seed corpus. Machine systems then use this
seed corpus to produce a full translation draft. Human translators post-edit the draft, and
feed new data to machines each time the newly post-edited text iteratively. In each iteration,
machines produce better and better drafts with new data, and human translators find it
easier and faster to post-edit. Together they complete the translation of the whole text into
a severely low-resource language.

As discussed in Chapter 1, our overall goal in this thesis is to minimize human translation
and post-editing efforts required to generate a full publishable-standard translation of the
given text. Ideally, we want to hire a large number of human translators to measure and
compare the resources (time and money) used to translate the same text into a target
low-resource language that does not have any translations of the text with and without our
help. However, this ideal solution is unrealistic especially in large translation projects. This
is why we transform our goal of minimizing human translation efforts required to generate
a full translation of the given text into two practical proxy sub-goals as the following:

1. Optimizing and minimizing the amount of sentences to be used to construct seed
corpus.

1The material in this chapter was originally published in LoresMT at MT Summit, 2021 [320] and
LoResMT at ACL, 2023 [324].
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Figure 6.2: Proposed joint human machine translation sequence for a given closed text.

2. Maximizing the quality and utility of MT-generated translation of the full text and
optimizing translation efficiency.

The first sub-goal of minimizing the seed corpus serves as a proxy in this chapter to
minimize the human translation efforts in the creation of the seed corpus, while the second
sub-goal of maximizing translation performance serves as a proxy in the next chapter
to minimize human translation efforts in the post-editing process during the subsequent
iterations.

With our work in the first part of the thesis, we minimize our seed corpus size to ∼3% of
the text. In other words, we use ∼3% of the text to translate ∼97% of the text [320, 321, 322].
In this chapter, we are interested in finding out which ∼3% of the text is to be translated first
to build a seed corpus to best improve the translation performance of the first translation
draft of the machine translation system. This will help to minimize the post-editing efforts
through the iterations afterwards.

To find which ∼3% of the text is to be translated first to optimize performance, we
examine how this process of construction methods of such seed corpora is completed in past.
Historically, this is mostly determined by field linguists’ experiential and intuitive discretion.
Many human translators employ a portion-based strategy when translating large texts. For
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Algorithm 1: Proposed joint human machine translation sequence for a given
closed text.

Input: A text of N lines consisting multiple books/portions, parallel in L source
languages

Output: A full translation in the target low-resource language, l′

0. Initialize translation size, n = 0, vocabulary size, v = 0, vocabulary update size,
△v = 0 ;

1. Using Active Learning to choose S (∼1,000) sentences with vocabulary size vS for
human translators to produce the seed corpus, update n = S, v = vS ;

2. Rank and pick a family of close-by languages by linguistic, distortion or performance
metric ;

while n < N do
if △v > 0 then

3. Pretrain on the full texts of neighboring languages ;
4. Train on the n sentences of all languages in multi-source multi-target configuration

;
5. Train on the n sentences of all languages in multi-source single-target configuration
;

6. Combine translations from all source languages using the centeredness measure ;
7. Review all books/portions of the translation draft ;
8. Pick a book/portion with n′ lines and v′ more vocabulary ;
9. Complete human post-editing of the portion chosen, v = v + v′, n = n + n′,
△v = v′ ;

return full translation co-produced by human (Step 1, 7-9) and machine (Step 0, 2-6)
translation ;

example, translation of the book “The Little Prince” may be divided into smaller tasks of
translating 27 chapters, or even smaller translation units like a few consecutive pages. Each
translation unit contains consecutive sentences. Consequently, machine translation often
uses seed corpora that are chosen based on human translators’ preferences, but may not
be optimal for machine translation. For optimal machine translation, researchers have yet
to examine various Active Learning (AL) methods to improve accuracy and effectiveness
in building better optimized seed corpora so as to minimize the initial human effort.

To solve this problem, we propose explainable and robust active learning methods that
perform as well as or better than random sampling; we transfer methods learned on data of
known languages to the new, severely low-resource language. Our contribution is two-fold: 1.
in addition to random sampling, we develop 14 active learning methods on known languages
and transfer ranking to the new, severely low-resource language; 2. we also aggregate scores
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from 115 languages to provide a universal ranking and increase robustness by relaxed
memoization method.

In this work, we aim to answer this question: when field linguists have limited time and
resources, which lines would be given priority? Given a closed text, we propose that it would
beneficial if field linguists translate ∼1,000 lines chosen based on active learning ranking
first, getting the first machine translated draft of the whole text, and then post-edit to
obtain final translation of each portion iteratively as shown in Algorithm 1. We recognize
that the portion-based translation is very helpful in producing quality translation with
formality, cohesion and contextual relevance. Thus, our proposed way is not to replace the
portion-based approach, but instead, to get the best of both worlds and to expedite the
translation process as shown in Figure 6.2.

6.1.1 Translation Workflow

In our translation workflow, human translators are informed by machine sentence ranking
through active learning to produce a seed corpus. Machine systems then use this seed corpus
to produce a full translation draft. Human translators post-edit the draft, and feed new
data to machines each time they finish post-editing a portion of the text. In each iteration,
machines produce better and better drafts with new data, and human translators find it
easier and faster to post-edit. Together they complete the translation of the whole text into
an severely low-resource language (Figure 6.1).

To produce sentence ranking, traditional active learning approaches assume abundant
data, but we have little to no data in the target severely low-resource language. We question
this assumption and build seed corpora by ranking all sentences in existing translations
from other languages to generalize to a new, severely low-resource language. This ranking
is target-independent as we do not require any severely low-resource language data. To
produce such a ranking, we explore active learning methods including random sampling,
unigram, n-gram, entropy and aggregation methods (Table 6.2). For each reference language,
we build unigram, n-gram and entropy models (Figure 6.3). To prevent any language from
overpowering the ranking, we aggregate sentence scores across multiple languages and rank
the final aggregation. To select the pool of languages for aggregation, we build methods on
different voting mechanisms.

To curate a seed corpus in the new, severely low-resource language where we have no data
initially, we pass the sentence ranking learned from known languages to human translators.
Human translators take this ranking, and translate the top few (∼1,000 or less) sentences,
curating the seed corpus. This seed corpus is then used for training MT systems.

Once the MT systems produces the translation draft, human translators post-edit the
draft. Once a stage of post-editing is finished, it is being fed back to the MT systems for
its training to produce better drafts. Over many iterations of MT drafting and human
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Figure 6.3: Visualizing different active learning methods. We score and rank each sentence in a
text corpus.

post-editing, the final translation of the entire text into the severely low-resource language
is completed.

6.1.2 Different Active Learning Approaches

Having understood our translation workflow, we are ready to examine different active
learning methods. One may ask, how does our translation task into low-resource languages
warrant special study given there are many existing research on active learning. To under-
stand the reason why our translation needs warrant a special study, it is important that
we understand the concept of the Knapsack Problem.

What is the Knapsack Problem? How is it relevant to translation? And how does it make
active learning in our translation scenario different from existing active learning research?
To answer these questions, let us define the Knapsack Problem first.
Definition 6.1.1 (Knapsack Problem). Optimize the selection of items from a given set,
considering their weights and values, with the aim of keeping the total weight within a
given limit while maximizing the total value [151, 227].

The Knapsack Problem finds practical applications in a myriad of decision-making sce-
narios, spanning a wide array of fields and industries, including Machine Translation [82]. If
we compare sentences in a text with items in a set, and use translation costs as weights, and

82



Book Author Books Chapters Pages Languages

The Bible Multiple 66 1,189 1,281 689
The Little Prince Antoine de Saint Exupéry 1 27 96 382
Dao De Jing Laozi 1 81 ∼10 >250
COVID-19 Wiki Page Multiple 1 1 ∼50 155
The Alchemist Paulo Coelho 1 2 163 70
Harry Potter J. K. Rowling 7 199 3,407 60
The Lord of the Rings J. R. R. Tolkien 6 62 1,037 57
Frozen Movie Script Jennifer Lee 1 112 ∼40 41
The Hand Washing Song Multiple 1 1 1 28
Dream of the Red Chamber Xueqin Cao 2 120 2500 23
Les Misérables Victor Hugo 68 365 1,462 21

Table 6.1: Examples of different texts with the number of languages translated to date [58, 64, 99,
140, 168, 171, 196, 247, 281, 287, 295, 314].

use sentence scores as values, then we can define the Knapsack Problem in Machine Trans-
lation. The Knapsack Problem is NP-hard, similarly, the Knapsack Problem in Machine
Translation is also NP-hard.
Definition 6.1.2 (Knapsack Problem in Machine Translation). Optimize the selection of
sentences from a given text, considering their translation costs and scores, with the aim of
keeping the total cost within a given limit while maximizing the combined score [82].

With these definitions, we are ready to compare our active learning situations with existing
active learning works in machine translation. Most of the existing research using active
learning for machine translation can be framed as the Knapsack Problem. However, the
difference lies mostly in what the sentence scores represent. Most of the existing work uses
a coverage-based score with the goal of covering each item in vocabulary once [82, 83, 119].
This is very different when we are using active learning in translation into low-resource
languages. Unlike existing work that covers the entire vocabulary, we use active learning
to build a seed corpus that is as low as ∼600 sentences which only cover a small portion
of the vocabulary. Our goal is to determine, with severely limited resources, which set of
sentences, covering only a small subset of the vocabulary, is able to give the best translation
draft in our translation efforts.

Indeed, many researchers count the number of unknown n-grams as score functions to
solve the Knapsack Problem, covering all vocabulary [82, 83, 119]. Instead of solving the
Knapsack Problem, we choose sentences to partially cover the vocabulary and build an
extremely small seed corpus. To cover the vocabulary strategically, we sum the frequency
counts of the unknown n-grams to increase density. These frequency counts promote frequent
words for learning to be meaningful under extremely low-resource scenarios.
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In Table 6.2 we denote frequency function by F (·), denote sequence length by L and
denote the highest n-gram order by J .

We first examine random sampling, before we introduce 14 more different active learn-
ing methods. Random sampling approach is different from the traditional portion-based
approach of translation by field-linguists. The main difference of the two approaches is that
the portion-based approach focuses on preserving coherence of the text locally, while the
random-sampling approach focuses on increasing coverage of the text globally. Our results
show that the random sampling approach performs better. When training on a seed corpus
of ∼1,000 lines from the Bible and testing on the rest of the Bible (∼30,000 lines), random
sampling beats the portion-based approach by +8.5 BLEU using English as a simulated
low-resource language training on a family of languages built on the distortion measure,
and by +1.9 using a Mayan language, Eastern Pokomchi, training on a family of languages
based on the linguistic definition. Using random sampling, machine translation is able to
produce a high-quality draft of the whole text that expedites the subsequent iterations of
translation efforts.

In addition to random sampling, we explore 14 more different active learning methods. To
improve accuracy and effectiveness in building better optimized seed corpora than randomly
sampled data so as to minimize the initial human effort, we propose explainable and robust
active learning methods that perform as well as or better than random sampling; we transfer
methods learned on data of known languages to the new, severely low-resource language.
We also examine different training schedules and we find a strategic way of growing large
multilingual models in a multilingual and multi-stage fashion with extremely small severely
low-resource seed corpora. Our work aims to bridge the gap between human translators
and machine translation systems for them to work together better.

Moreover, we compare three different ways of incorporating incremental post-edited data
during the translation process. We find that self-supervision using the whole translation
draft affects performance adversely, and is best to be avoided. We also show that adding
the newly post-edited text to training with vocabulary update performs the best.

6.2 Methodology

Our main goal is to translate a given text that is available in many languages to a new,
severely low-resource language. In our translation workflow, we first develop active learning
methods to transfer sentence ranking from known languages to a new, severely low-resource
language. We then pass this ranking to human translators for them to translate the top
few (∼1,000 or less) sentences into the severely low-resource language, curating the seed
corpus. We finally train on the seed corpus, either from scratch or from a pretrained model.
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To develop active learning methods to transfer sentence ranking from known languages
to a new, severely low-resource language, we start with random sampling and comparing it
with the traditional portion-based approach. In addition to random sampling, we propose
and compare 14 active learning methods for machine translation into a new, severely
low-resource language. To compare all active learning algorithms fairly, we use the same
translation system unit as a control for all experiments, varying only the seed corpora built
by different methods. We select the same number of words in all seed corpora as most
translators are paid by the number of words [33, 82, 288].

6.2.1 Training Schedule

In our setup we have the new, severely low-resource language as the target language, and
we have a few neighboring languages as the source languages that are either in the same
linguistic language family or geographically close to facilitate linguistic transfer. In effect,
we have N source languages with full translations of the text and a new and severely
low-resource language that has an extremely small seed corpus.

We train our models using a state-of-the-art multilingual transformer by adding lan-
guage labels to each source sentence [117, 147, 322, 323]. We borrow the order-preserving
named entity translation method by replacing each named entity with __NEs [323] using
a multilingual lexicon table that covers 124 source languages and 2,939 named entities
[321]. For example, the sentence “Somchai calls Juan” is transformed to “__opt_src_en
__opt_tgt_ca __NE0 calls __NE1” to translate to Chuj. We use families of close-by languages
constructed by ranking 124 source languages by distortion measure (FAMD), performance
measure (FAMP) and linguistic family (FAMO+); the distortion measure ranks languages
by decreasing probability of zero distortion, while the performance measure incorporates
an additional probability of fertility equalling one [321]. Using families constructed, we
pretrain our model first on the whole text of nearby languages, then we train on the ∼1,000
lines of low-resource data and the corresponding lines in other languages in a multi-source
multi-target fashion. We finally train on the ∼1,000 lines in a multi-source single-target
fashion [321].

We combine translations of all source languages into one. Let all N translations be ti, i =
1, . . . , N and let similarity between translations ti and tj be Sij. We rank all translations
according to how centered it is with respect to other sentences by summing all its similarities
to the rest through ∑

j Sij for i = 1, . . . , N . We take the most centered translation for every
sentence, maxi

∑
j Sij, to build the combined translation output. The expectation of the

combined score is higher than that of any of the source languages [321].
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Name Description Score Function

S Frequency sum of unknown words
L∑

i=0
F (wu

i )

SN Normalized S by L 1
L

L∑
i=0

F (wu
i )

SNGJ Normalized Frequency sum of n-grams up to J 1
L

J∑
j=1

L∑
i=0

F (gu
i,j)

AGGM
J Aggregation of n-gram scores up to J with set M

∑
M

1
L

J∑
j=1

L∑
i=0

F (gu
i,j)

ENTK Entropy methods, K is KenLM or not HK
c (s)−Il(s) ·HK

r (s)−Ir(s) ·HK
l (s)

Table 6.2: Summary of score functions.

6.2.2 Active Learning Strategies

Random Sampling

Our initial approach is random sampling to increase coverage of the text. To show the
effect of random sampling, we compare it with the baseline of the linguistic baseline of
the excerpt-based approach, Luke. The excerpt-based approach, which selects a portion of
the text with consecutive sentences, preserves the text’s formality, cohesion and context
but lacks global coverage. Random sampling increases global coverage but sacrifices local
coherence.

N-gram Approach

In addition to random sampling, we devise different active learning methods based on
n-gram methods, entropy methods, and aggregation methods. To show the effectiveness
of these active learning methods, we compare them with two baselines: linguistic baseline
of the excerpt-based approach, Luke, and the statistical baseline of random sampling as
our second baseline. Therefore, for the next section of active learning, we have 2 baselines:
the linguistic baseline of the excerpt-based approach, Luke, and the statistical baseline of
random sampling, Rand.

N-gram methods have often been used in research. Many researchers count the number of
unknown n-grams as score functions to solve the Knapsack Problem, covering all vocabulary
[82, 83, 119]. Instead of solving the Knapsack Problem, we choose sentences to partially
cover the vocabulary and build an extremely small seed corpus. To cover the vocabulary
strategically, we sum the frequency counts of the unknown n-grams to increase density. These
frequency counts promote frequent words for learning to be meaningful in the extremely
low-resource scenario. In Table 6.2 we denote frequency function by F (·), denote sequence
length by L and denote the highest n-gram order by J .
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Entropy Approach

Many have worked on entropy methods in modelling density and diversity [9, 82, 119, 315].
Our problem defers from previous work in that our data is much smaller, and we rely on
other languages to generalize to the severely low-resource language. Therefore, we combine
the existing research in combining density and diversity metrics into score functions in
ranking sentences together with frequency counts2. Frequency counts here helps us to
promote frequent words in our use case of extremely small data and partial vocabulary. We
would like to cover as many words as possible, but we also would like to give priority to more
frequent words for learning to be meaningful in the extremely low-resource scenario. We use
traditional Language Models (LMs) instead of neural language models, as our data size is
extremely small. For implementations of LMs, we use KenLM and NLTK’s LM because of
their simplicity and speed, especially KenLM [31, 84, 102, 120, 128]. In Table 6.2 we let H(·)
be the cross entropy function, with the choice of KenLM (K) or NLTK (N). To separate
training from testing in using language models, we divide the data into three portions, the
sentences that we have chosen (c), and the remaining that are split equally into two parts,
left (l) and right (r). Let Il(·) and Ir(·) be indicator functions to show whether a sentence
belongs to the left or the right. We aim to maximize the diversity Hc and optimize density
by adjusting Hl and Hr [164].

Aggregation Approach

To prevent any language from overpowering the ranking, we aggregate sentence scores across
different languages (Figure 6.3). We investigate the use of a customized set of languages
for each severely low-resource language, versus the use of a universal set of languages
representing world languages. The former requires some understanding of the neighboring
languages, the latter requires careful choices of the representative set [32]. To build a
universal ranking, we either aggregate over all existing languages, or create a representative
pool for existing languages.

We have 4 aggregation methods: one-vote-per-language (L), where we aggregate over
all languages, one-vote-per-family (F), where we aggregate over languages representing
the top few families, one-vote-per-person (P), where we aggregate over the top few most
spoken languages, and one-vote-per-neighbor (N), where we aggregate over a customized
set of neighboring languages. For the world language distribution, L covers all, F samples
across it, P covers the head, while N creates a niche area around the severely low-resource
language.

2In the entropy score function in Table 6.2, we use highest n-gram order of 2 for NLTK’s LM, we use
highest n-gram order of 2 for the two halves (HK

l and HK
r ) and order of 5 for the sampled data (HK

c ) for
KenLM. Since KenLM needs at least a few words to start with, we use MLE as a warm start to select up
to 5 sentences before launching KenLM.
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Aggregation decreases variance and increases accuracy. Typical aggregation involve taking
the sum or the average. Since they have the same effect on sentence ranking, we take the
sum for simplicity.

To implement one-vote-per-language, we train on all available languages. that have full
translations of the text , which calls for memory and time efficient algorithms. We use
parallel algorithms, use hash maps for all data structures, skip disk-caching to save time
and space, and reuse important data structures [7]. To save space and time, we devise
relaxed memoization. We observe that only a few words are added to the vocabulary during
each step, and therefore only a few sentences containing these new words have updated
scores. At every step, we compute sentence score for each language, producing a score
matrix of languages versus sentences. We update entries that are affected by the selected
sentence, cache and reuse other entries. Further parallelism reduce memory consumption
and results in >360 times speedup, from ∼6.5 months to ∼13 hours. Our code is efficient
in memory and time.

6.2.3 Joint Human Machine Translation

Our work differs from the past research in that we put low-resource translation into the
broad collaborative scheme of human machine translation. We compare the portion-based
approach with the active learning approach in building seed corpora. We also compare
three methods of updating models with increasing amount of human post-edited data. We
add the newly post-edited data to training in three ways: with vocabulary update, without
vocabulary update, or incorporating the whole translation draft in a self-supervised fashion
additionally. For best performance, we build the seed corpus by active learning, update
vocabulary iteratively, and add newly post-edited data to training without self-supervision.
We also have a larger test set, we test on ∼30,000 lines rather than ∼678 lines from existing
research 3.

We propose a joint human machine translation workflow in Algorithm 1. After pretraining
on neighboring languages in Step 3, we iteratively train on the randomly sampled seed
corpus of low-resource data in Step 4 and 5. The reason we include both Step 4 and 5 in
our algorithm is because training both steps iteratively performs better than training either
one [321]. Our model produces a translation draft of the whole text. Since the portion-
based approach has the advantage with formality, cohesion and contextual relevance, human
translators may pick and post-edit portion-by-portion iteratively. The newly post-edited
data with updated vocabulary is added to the machine translation models without self-
supervision. In this way, machine translation systems rely on quality parallel corpora that
are incrementally produced by human translators. Human translators lean on machine
translation for quality translation draft to expedite translation. This creates a synergistic
collaboration between human and machine.
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6.2.4 Evaluation Metrics

Existing multilingual systems produce multiple outputs from all source languages, rendering
comparison messy. To simplify, we combine translations from all source languages into one
by an existing centeredness method [321]. Using this method, we score each translated
sentence by the sum of its similarity scores to all others, and we take the highest ranked
sentence by score as our final translation.

To compare effectively, we control all test sets to be the same. Since different active
learning strategies produce different seed corpora to be used as training and validation sets,
the training and validation sets vary. Their complement, the test sets therefore also vary,
rendering comparison difficult. To build the same test set, we devise an intersection method.
We take the whole text and carve out all seed corpora, that is, all training and validation
sets from all experiments. The remaining is the final test set, which is the intersection of
all test sets.

Using our intersection method, we are able to build a common test set for all our experi-
ments. One may ask, why not set aside a fixed amount of sentences for testing? The reason
that we do not hold out a test set is because of our experiment setup. In each experiment,
we use a different active learning algorithm to choose ∼3% of the text to build the seed
corpus, then use this ∼3% of the text to translate ∼97% of the text. We have more than
200 experiments in this chapter, and each has a different seed corpus. In each experiment,
we compare all the sentences of the text to select sentences to build a seed corpus. If we do
hold out a test set for all experiments, this bars those held-out test sentences from being
selected into the seed corpus for each experiment. Consequently, all seed corpora will be
changed as a result of holding out a test set. This is not what we intend in our experiment
design. This is why we propose the intersection method so that every experiment has access
to all sentences to select into its seed corpus and we can compare them most effectively.

Our metrics are: chrF, characTER, BLEU, COMET score, and BERTscore [230, 231, 241,
275, 305, 317]. For random sampling, our metric used is mainly BLEU as we only show our
result in two languages. However, for experiments on extended active learning strategies,
we test on many more languages and we prioritize chrF over BLEU for better accuracy,
fluency and expressive power in morphologically-rich languages [217].

6.3 Data

We show two sets of experiments: one on random sampling, the other on more extended
active learning methods including n-gram methods, entropy methods, and aggregation
methods.
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Target L Family Source Languages

Frisian 0 Germanic English*, German, Dutch, Norwegian, Afrikaans, Swedish,
French, Italian, Portuguese, Romanian

Hmong 0 Hmong–Mien Komrem*, Vietnamese, Thai, Chinese, Myanmar, Haka,
Tangsa, Zokam, Siyin, Falam

Pokomchi 0 Mayan Chuj*, Cakchiquel, Mam, Kanjobal, Cuzco, Ayacucho, Bo-
livian, Huallaga, Aymara, Guajajara

Turkmen 1 Turkic Kyrgyz*, Tuvan, Uzbek, Karakalpak, Kazakh, Azerbaijani,
Japanese, Korean, Finnish, Hungarian

Sesotho 1 Niger–Congo Yoruba*, Gikuyu, Xhosa, Kuanyama, Kpelle, Fon, Bulu,
Swati, Venda, Lenje

Welsh 1 Celtic English*, German, Danish, Dutch, Norwegian, Swedish,
French, Italian, Portuguese, Romanian

Xhosa 2 Nguni Swati*, Gikuyu, Sesotho, Yoruba, Lenje, Gbaya, Afrikaans,
Wolaitta, Kuanyama, Bulu

Indonesian 3 Austronesian Javanese*, Malagsy, Tagalog, Ilokano, Cebuano, Fijian,
Sunda, Zokam, Wa, Maori

Hungarian 4 Uralic Finnish*, French, English, German, Latin, Romanian,
Swedish, Spanish, Italian, Portuguese

Spanish 5 Romance English*, German, Danish, Dutch, Norwegian, Swedish,
French, Italian, Portuguese, Romanian

Table 6.3: Summary of different target languages used [43, 59]. L, resource level, is from a scale
of 0 to 5 [148]. Reference languages used for active learning methods except aggregate methods
are starred.

6.3.1 Random Sampling

To first test random sampling, we work on the Bible in 124 source languages [196], and have
experiments for English, a simulated language, and Eastern Pokomchi, a Mayan language.
We train on ∼1,000 lines of low-resource data and on full texts for all the other languages.
We aim to translate the rest of the text (∼30,000 lines) into the low-resource language. In
pretraining, we use 80%, 10%, 10% split for training, validation and testing. In training, we
use 3.3%, 0.2%, 96.5% split for training, validation and testing. Our test size is >29 times
of the training size 3. We use the book “Luke” for the portion-based approach as suggested
by many human translators.

Training on ∼100 million parameters with Geforce RTX 2080 Ti, we employ a 6-layer
encoder and a 6-layer decoder with 512 hidden states, 8 attention heads, 512 word vector size,
2,048 hidden units, 6,000 batch size, 0.1 label smoothing, 2.5 learning rate, 0.1 dropout and
attention dropout, an early stopping patience of 5 after 190,000 steps, “BLEU” validation
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metric, “adam” optimizer and “noam” decay method [157, 217]. We increase patience to
25 for larger data in the second stage of training in Figure 6.4a and 6.4b.

6.3.2 N-gram, Entropy and Aggregation Methods

In addition to random sampling, we are interested in comparing various n-gram methods,
entropy methods and aggregation methods. To test these methods, we choose a more
extensive set of target languages. When we choose target languages, we look at existing
research, which classifies world languages into Resource 0 to 5, with 0 having the lowest
resource and 5 having the highest [148]. We choose 10 target languages ranging from
Resource 0 to 5 (Table 6.3). For each target language we choose ten neighboring languages
as source languages (Table 6.3). These languages are Eastern Pokomchi, Hmong, and Frisian
(Resource 0), Turkmen, Welsh and Sesotho (Resource 1), Xhosa (Resource 2), Indonesian
(Resource 3), Hungarian (Resource 4), Chinese and Spanish (Resource 5) in Table 6.3. We
prioritize Resource 0 to 2 languages as real low-resource languages, and we use Resource
3 to 5 languages as hypothetical ones. It is surprising to us that a lot of the Resource 0
languages are not too far away from the rich-resource languages. Frisian, for example, are
spoken near the Northern Sea near Netherlands and Germany, and is in close proximity
with a few rich-resource European languages [193]. However, because of the close proximity
with rich-resource languages, low-resource languages like Frisian often suffer from lack of
prestige and has a bigger threat to extinction as many younger people choose to speak
the rich-resource languages nearby. This also suggests interesting research direction on
low-resource languages and dialects that are in close proximity with rich-resource language
communities.

To translate into these languages, our text is the Bible in 125 languages [196]. Each
low-resource seed corpus contains ∼3% of the text, while all other languages have full text.
Our goal is to translate the rest of the text into the low-resource language. In pretraining,
we use a 80/10/10 split for training, validation and testing, respectively. In training, we use
approximately a 3.0/0.2/96.8 split for training, validation and testing, respectively. Our
training data for each experiment is ∼1,000 lines. We use BPE with size of ∼3,000 for the
low-resource language and ∼9,000 for the combined [260].

Training on ∼100 million parameters with Geforce RTX 2080 Ti and RTX 3090, we use
a 6-layer encoder and a 6-layer decoder with 512 hidden states, 8 attention heads, 512 word
vector size, 2,048 hidden units, 6,000 batch size, 0.1 label smoothing, 2.5 learning learning
rate and 1.0 finetuning learning rate, 0.1 dropout and attention dropout, a patience of 5
after 190,000 steps in [N]2 with an update interval of 1000, a patience of 5 for [N+1]2 with
an update interval of 200, and a patience of 25 for [N+1] and [1]2 with an update interval
of 50, “adam” optimizer and “noam” decay method [157, 217].
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Training Luke Rand Training Luke Rand Training Luke Rand

Testing Best All Best All Testing Best All Best All Testing Best All Best All

Combined 37.9 21.9 42.8 28.6 Combined 38.6 22.9 44.8 31.4 Combined 40.2 23.7 44.6 30.6

German 35.6 20.0 40.8 26.5 German 37.0 20.8 42.7 28.8 German 38.0 21.3 41.6 28.2
Danish 36.7 19.0 38.2 25.9 Danish 37.3 19.6 39.5 28.0 Danish 38.4 19.9 39.2 27.5
Dutch 36.4 20.4 39.7 27.2 Dutch 36.4 21.1 41.9 29.6 Dutch 37.5 21.6 41.6 28.9
Norwegian 36.5 20.2 40.0 26.9 Norwegian 37.2 20.8 41.4 29.1 Norwegian 37.5 21.1 41.0 28.4
Swedish 34.9 19.7 39.9 26.2 Afrikaans 38.3 22.2 42.8 30.5 Afrikaans 39.5 22.9 42.3 29.8
Spanish 36.8 21.5 39.8 27.6 Marshallese 35.1 21.6 41.4 28.8 Spanish 38.7 22.9 41.9 29.0
French 36.0 19.7 39.6 26.1 French 36.2 20.3 41.1 28.3 French 37.3 20.7 40.5 27.5
Italian 36.7 20.6 38.4 26.9 Italian 37.3 21.0 40.6 29.1 Italian 38.6 21.8 39.9 28.5
Portuguese 32.4 15.8 30.1 21.3 Portuguese 33.2 16.5 33.6 24.0 Portuguese 33.7 16.3 33.1 22.9
Romanian 34.9 19.3 37.1 26.0 Frisian 36.4 21.6 43.0 29.8 Frisian 37.8 22.3 42.2 29.1

Table 6.4: Performance training on 1,093 lines of English data on FAMO+, FAMD and FAMP.
We train using the portion-based approach in Luke, and using random sampling in Rand. During
testing, Best is the book with highest BLEU score, and All is the performance on ∼29,000 lines
of test data 3.

6.4 Results
We first look at our results on random sampling, and then we compare it with n-gram,
entropy and aggregation methods through extensive experiments in multiple severely low-
resource languages.

6.4.1 Random Sampling
We observe that random sampling performs better than the portion-based approach. Train-
ing on ∼3% of the text, and testing on ∼97% of the text, we see a sharp performance gain
by random sampling. In Table 6.4 and 6.5, random sampling gives a performance gain of
+8.5 for English on FAMD and +1.9 for Eastern Pokomchi on FAMO+ 3. The performance
gain for Eastern Pokomchi may be lower because Mayan languages are morphologically

3 In the previous chapter, we test on ∼30,000 lines excluding the ∼1,000 lines of training and validation
data. In this chapter, we test on the intersection of different test sets. In Table 6.4 and 6.5, we test on
∼29,000 lines of data of the Bible excluding both the book of Luke and the randomly sampled ∼1,000
lines. In Table 6.6, we evaluate on ∼29,000 lines of data of the Bible excluding both the randomly sampled
∼1,000 lines and the book of 1 Chronicles.
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Input Language Family

By Linguistics By Distortion By Performance

FAMO+ FAMD FAMP

Training Luke Rand Training Luke Rand Training Luke Rand

Testing Best All Best All Testing Best All Best All Testing Best All Best All

Combined 23.1 8.6 19.7 10.5 Combined 23.3 8.5 17.7 9.5 Combined 22.4 7.2 15.8 7.8

Chuj 21.8 7.9 16.5 9.8 Chuj 22.0 7.9 15.4 8.9 Chuj 21.8 7.0 13.2 7.3
Cakchiquel 22.3 7.9 18.2 9.9 Cakchiquel 22.4 7.9 17.3 9.1 Cakchiquel 21.2 6.9 14.8 7.4
Guajajara 19.9 7.1 14.7 8.9 Guajajara 19.2 6.9 14.2 8.2 Guajajara 18.9 5.9 10.6 6.6
Mam 22.2 8.6 19.7 10.6 Russian 22.2 7.3 13.7 8.5 Mam 21.9 7.5 17.1 8.0
Kanjobal 21.8 8.1 17.5 10.0 Toba 22.0 8.3 16.8 9.4 Kanjobal 21.6 7.1 13.8 7.6
Cuzco 22.4 7.8 17.7 9.8 Myanmar 19.2 5.3 10.7 6.5 Thai 21.9 6.3 10.5 7.0
Ayacucho 21.6 7.6 18.5 9.7 Slovenský 22.2 7.5 13.5 8.7 Dadibi 19.9 6.2 15.3 6.9
Bolivian 22.3 7.8 17.4 9.8 Latin 22.0 7.8 14.8 9.0 Gumatj 19.2 3.8 8.9 3.3
Huallaga 22.2 7.7 18.0 9.7 Ilokano 22.6 8.4 17.8 9.4 Navajo 21.4 6.5 13.5 7.3
Aymara 21.5 7.5 18.6 9.6 Norwegian 22.6 8.3 16.7 9.4 Kim 21.6 7.0 13.9 7.5

Table 6.5: Performance training on 1,086 lines of Eastern Pokomchi data on FAMO+, FAMD and
FAMP. We train using the portion-based approach in Luke, and using random sampling in Rand.
During testing, Best is the book with highest BLEU score, and All is the performance on ∼29,000
lines of test data 3.

rich, complex, isolated and opaque [5, 56, 86]. English is closely related to many languages
due to colonization and globalization even though it is artificially constrained in size [30].
This may explain why Eastern Pokomchi benefits less.

In addition to evaluating all of the remaining text (∼97% of the text), we also evaluate
the best book of the remaining text. The Bible has 66 books. The best performing book in
our draft recommends human translators the easiest book to post-edit first.

To simulate human translation efforts in Step 7 and 8 in Algorithm 1, we rank 66 books
of the Bible by BLEU scores on English’s FAMD and Eastern Pokomchi’s FAMO+. We
assume that BLEU ranking is available to us to simulate human judgment. In reality,
this step is realized by human translators skimming through the translation draft and
comparing performances of different books by intuition and experience. In Section 6.5,
we will discuss the limitation of this assumption. Performance ranking of the simulated
low-resource language may differ from that of the actual low-resource language. But the
top few may coincide because of the nature of the text, independent of the language. In
our results, we observe that narrative books performs better than philosophical or poetic
books. The book of 1 Chronicles performs best for both English and Eastern Pokomchi
with random sampling. A possible explanation is that the book of 1 Chronicles is mainly
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Source Seed Self-Supervised Old-Vocab Updated-Vocab

Combined 30.8 24.4 (-6.4) 32.1 (+1.3) 32.4 (+1.6)

Danish 27.7 21.6 (-6.1) 28.8 (+1.1) 29.2 (+1.5)
Norwegian 28.6 22.5 (-6.1) 29.8 (+1.2) 30.2 (+1.6)
Italian 28.7 22.3 (-6.4) 29.8 (+1.1) 30.2 (+1.5)
Afrikaans 30.1 23.8 (-6.3) 31.4 (+1.3) 31.6 (+1.5)
Dutch 29.2 22.9 (-6.3) 30.3 (+1.1) 30.6 (+1.4)
Portuguese 23.8 18.3 (-5.5) 24.6 (+0.8) 25.0 (+1.2)
French 27.8 21.7 (-6.1) 28.9 (+1.1) 29.4 (+1.6)
German 28.4 22.4 (-6.0) 29.5 (+1.1) 29.9 (+1.5)
Marshallese 28.4 22.4 (-6.0) 29.5 (+1.1) 29.9 (+1.5)
Frisian 29.3 23.2 (-6.1) 30.4 (+1.1) 30.8 (+1.5)

Table 6.6: Comparing three ways of adding the newly post-edited book of 1 Chronicles 3. Seed is
the baseline of training on the seed corpus alone, Old-Vocab skips the vocabulary update while
Updated-Vocab has vocabulary update. Self-Supervised adds the complete translation draft in
addition to the new book.

narrative, and contains many named entities that are translated well by the order-preserving
lexiconized model. We included the BLEU scores of the best-performing book in Table 6.4
and 6.5. Note that only scores of “All” are comparable across experiments trained on the
book of Luke with those trained by random sampling as they evaluate on the same set 3.
For the best-performing book, it is the book of 1 Chronicles for random sampling, and the
book of Mark or the book of Matthew for experiments trained on the book of Luke. Thus,
we cannot compare BLEU scores for the best-performing books across experiments. We
include them in the tables to show the quality of the translation draft human translators
will work on if they proceed to translate the best-performing book.

In Table 6.6, we compare three different ways of updating the machine translation models
by adding a newly post-edited book that human translators produced. We call the baseline
without addition of the new book Seed. Updated-Vocab adds the new book to training with
updated vocabulary while Old-Vocab skips the vocabulary update. Self-Supervised adds
the whole translation draft of ∼30,000 lines to pretraining in addition to the new book.
Self-supervision refers to using the small seed corpus to translate the rest of the text which
is subsequently used to train the model. We observe that the Self-Supervised performs the
worst among the three. Indeed, Self-Supervised performs even worse than the baseline Seed.
This shows that quality is much more important than quantity in severely low-resource
translation. It is better for us not to add the whole translation draft to the pretraining as
it affects performance adversely.

On the other hand, we see that both Updated-Vocab and Old-Vocab performs better
than Seed and Self-Supervised. Updated-Vocab’s performance is better than Old-Vocab.
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(a) English (b) Eastern Pokomchi

Figure 6.4: Performance of the most difficult 11 books with increasing number of training books.

An explanation could be that Updated-Vocab has more expressive power with updated
vocabulary. Therefore, in our proposed algorithm, we prefers vocabulary update in each
iteration. If the vocabulary has not increased, we may skip pretraining to expedite the
process.

We show how the algorithm is put into practice for English and Eastern Pokomchi in
Figure 6.4a and 6.4b. After producing the first draft of the text by training a MT system
on the seed corpus, we hold out the most difficult 11 books (the worst-performing 11 books)
and set them aside as the test set for evaluating the entire iterative post-editing process.
Taking the most difficult 11 books as the held-out test set, we divide the other 55 books
of the Bible into 5 portions to simulate 5 iterations of post-editing process. Using this
setup, we translate the text by using the randomly sampled ∼1,000 lines of seed corpus
first, and then proceed with human machine translation in Algorithm 1 in 5 iterations
with increasing number of post-edited portions. Each portion contains 11 books, serving as
post-edited portion for each iteration. In each iteration, we simulate human post-editing
process by feeding the actual translation of the given text portion to the MT system. MT
system produces better and better drafts and we show the improvement using the most
difficult 11 books.

For English, we observe that philosophical books like “Proverbs” and poetry books like
“Song of Solomon” perform very badly in the beginning, but begin to achieve above 20
BLEU scores after adding 11 books of training data. This reinforces our earlier result that
∼20% of the text is sufficient for achieving high-quality translation [322]. However, some
books like “Titus” remains difficult to translate even after adding 33 books of training data.
This shows that adding data may benefit some books more than the others. A possible
explanation is that there are multiple authors of the Bible, and books differ from each other
in style and content. Some books are closely related to each other, and may benefit from
translations of other books. But some may be very different and benefit much less.
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
+ Luke 47.5 41.6 39.4 34.9 41.2 41.2 32.0 43.3 34.4 46.7 40.2
+ Rand 50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5

Our Models:
+ S 49.2 38.5 40.4 35.2 39.0 41.9 32.5 43.5 35.1 48.0 40.3
+ SN 50.9 43.9 43.2 38.3 41.6 43.2 36.1 46.9 36.7 50.3 43.1
+ SNG2 53.2 46.1 43.3 39.5 44.4 45.8 36.6 48.4 37.8 51.8 44.7
+ SNG3 52.7 46.0 44.5 39.6 45.5 47.5 36.8 48.9 39.2 52.3 45.3
+ SNG4 53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4
+ SNG5 53.0 45.6 43.9 39.7 45.4 46.7 36.8 49.1 38.4 52.5 45.1
+ ENTN 50.9 43.7 38.1 37.2 42.5 44.5 34.7 46.7 36.0 49.9 42.4
+ ENTK 52.7 45.7 43.5 40.2 44.6 45.2 36.4 49.0 39.1 51.8 44.8
+ AGGL

5 47.1 41.5 39.8 34.0 39.9 42.1 31.4 43.5 33.7 45.2 39.8
+ AGGF

5 45.0 38.4 38.5 32.4 38.8 47.1 30.4 41.2 33.3 44.2 38.9
+ AGGP

5 45.5 38.8 38.0 32.0 38.8 48.2 30.5 41.0 33.2 44.0 39.0
+ AGGN

5 45.4 39.1 38.3 32.4 38.8 48.0 30.7 41.2 33.2 44.3 39.1

Table 6.7: 140 experiments comparing 14 active learning methods translating into 10 different
languages with Schedule B.

For Eastern Pokomchi, though the performance of the most difficult 11 books never reach
BLEU score of 20s like that of English experiments, all books have BLEU scores that are
steadily increasing. Challenges remain for Eastern Pokomchi, a Resource 0 language [148].
We hope to work with native Mayan speakers to see ways we may improve the results.

6.4.2 N-gram, Entropy, and Aggregation Methods

In addition to active learning, we compare 14 active learning methods across 10 different
target languages (Table 6.7).

Normalizing by sequence length improves density: Without normalization, the
model chooses longer sentences with many rare words. Normalization improves density. For
Sesotho, the chrF score is 39.0 without normalization and 41.6 with it.

Marginal benefit of increasing n-gram order wanes: Existing research shows
bigrams suffice [82]. As the n-gram order increases, the data gets sparser and the marginal
benefit subsides. Hmong has the best score (46.1) using bigrams.

Tipping points vary with language: The optimal highest n-gram order may differ
from language to language. 4-grams work best for Frisian while bigrams work best for
Hmong. Hmong is an isolating language while Frisian is a fusional language. A possible
explanation is that higher n-grams may have more impact on fusional languages.

Entropy and n-gram methods both beat baselines and higher n-gram mod-
els perform best: KenLM is much faster and performs better than NLTK. The entropy
method using KenLM beats both baselines. Frisian has a chrF score of 52.7 with the entropy
method using KenLM. This is much higher than the baselines: Luke (47.5) and Rand (50.5).
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The 4-gram model (53.6) is higher because building LMs from a few lines of data may not
be accurate. Simpler n-gram models work better than more evolved entropy models with
small data.

Aggregation over all languages serves as a universal ranking: The first 10 active
learning methods are based on learning from one reference language and generalizing to the
low-resource language, while the last 4 focus on aggregation over multiple languages (Ta-
ble 6.7). For Welsh, aggregation over multiple languages (48.2 with most spoken languages)
performs better than those that rely on one reference language; but for other languages
aggregation performs worse. Aggregation over all languages performs better than other
aggregation methods for all languages except Welsh. This hinges on the reference language.
For Frisian, choosing English (a Germanic language) as a reference language, performs bet-
ter than aggregation. For Welsh (a Celtic language), choosing a reference language that is
not as close, performs worse. But we often do not have such information for the low-resource
languages. In such cases, universal ranking by aggregating over all languages is useful.

We recommend n-gram methods as the most efficient in computational cost:
Among all of our active learning methods, random sampling does not require much com-
putation, and therefore costs the least in terms of computational time. However, random
sampling does not perform as well as n-gram models. Comparing n-gram models with
entropy models and aggregation models, n-gram models is the most effective, costing the
least in terms of computational time, and performs the best. For example, a 4-gram active
learning model takes around 38 minutes to train, while an entropy model typically takes 14
hours to train. Since aggregation methods by design take multiple reference languages, they
take longer time than than any models based on a single reference language. This is the
reason we highly recommend n-gram methods as the most efficient and the least expensive.

Our active learning methods mimic curriculum learning: Our models pick short
and simple sentences first, emulating curriculum learning and helping human translators
[24, 110, 146].

All active learning methods cover different genres: Our methods pick a mix
of sentences from different genres, sentence lengths and complexity levels. Moreover, our
methods pick narrative sentences first, which is helpful for human translators.

Our model captures some language subtleties: Apart from the metrics, we showed
our translation to native speakers (Table 6.8). We translate “He sees that it is good” to
“Lug ca rua huv nwg lu sab”(“He puts it in the liver”) in Hmong, which uses liver to express
joy. This increases lexical choice.
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6.5 Conclusion

To serve our main goal of minimizing human translation and post-editing efforts, our
contribution in this chapter is that we minimize the seed corpus to be ∼3% of the text.
Indeed, we use ∼3% of the text to translate the ∼97% of the text in the low-resource
language we want to translate to. Having minimized the training data to be ∼3% of the
text in the given low-resource language, we optimize this process with active learning on
which ∼3% of the text to translate first to produce the seed corpus. To determine which
∼3% of the text, we show results from random sampling, as well as n-gram, entropy, and
aggregation methods in addition to the portion-based approach to build seed corpus without
any low-resource language data. Of all these methods, we find that the n-gram method
(in particular, the 4-gram method) is sufficient for producing high translation performance
when we are given complete information of languages close to the given low-resource
language. However, when we are not given complete information of the close-by languages,
we recommend the aggregation method proposed in this chapter as a universal ranking
to use. This minimizes human translation efforts in the production of the seed corpus.
Additionally, we also compare three different ways of updating the machine translation
models by adding newly post-edited data iteratively. We find that vocabulary update is
necessary, but self-supervision by pretraining with whole translation draft is best to be
avoided.

However, we still face challenges with the lack of local coherence and context. The excerpt-
based approach enjoys advantages with formality, cohesion and contextual relevance. Active
learning methods, on the contrary, do not have consecutive sentences and therefore lose
local coherence and pose challenges to human translators [66, 195, 202, 248, 273, 309, 320].
Human translators may not be receptive to active learning methods like random sampling.
Additionally, it may take longer for human translators to translate a set of non-consecutive
sentences, because each sentence may be from a different chapter with a different context
and it is harder for human translators to recycle translations. Indeed, the lack of local
coherence and global context is a real challenge when human translators work with machine
translation systems. Moreover, improving local coherence is important and is also an active
research area.

One limitation of our work is that in real life scenarios, we do not have the reference text
in low-resource languages to produce the BLEU scores to decide the post-editing order.
Consequently, field linguists need to skim through and decide the post-editing order based
on intuition. However, computational models can still help. One potential way to tackle
it is that we can train on ∼1,000 lines from another language with available text and test
on the 66 books. Since our results show that the literary genre plays important role in
the performance ranking, it would be reasonable to determine the order using a “held-out
language” and then using that to determine order in the target low-resource language.
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In the future, we would like to work with human translators who understand and speak
low-resource languages.

Another concern human translators may have is the creation of randomly sampled seed
corpora. To gauge the amount of interest or inertia, we have interviewed some human
translators and many are interested. However, it is unclear whether human translation
quality of randomly sampled data differs from that of the traditional portion-based approach.
We hope to work with human translators closely to determine whether the translation quality
difference is manageable.

We are also curious how our model will perform with large literary works like “Lord of
the Rings” and “Les Misérables”. We would like to see whether it will translate well with
philosophical depth and literary complexity. However, these books often have copyright
issues and are not as easily available as the Bible data. We are interested in collaboration
with teams who have multilingual data for large texts, especially multilingual COVID-19
data.

Having examined various active learning methods in building seed corpora that optimize
machine translation, we have established the first step of the human machine translation
workflow as show in Figure 6.1. In the next chapter, we will focus on the next few steps in
the workflow by focusing on how to use large multilingual models to most effectively train
on such a small seed corpus in the low-resource language.
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Target System Translation Reference

Frisian mar Ruth sei: Ik scil dy net forlitte, en ik scil fen
dy net weromkomme; hwent hwer “tstû hinnegeane,
den scil ik hinnegean, en dêr scil ik dy fornachtsje.
dyn folk is myn folk, en dyn God is myn God.

mar Ruth sei: Sit net tsjin my oan, dat ik jo forlitte en weromt-
sjen scil; hwent hwer “t jo hinne geane, dêr scil ik hinne gean,
en hwer “t jo fornachtsje, dêr scil ik fornachtsje; jins folk is
myn folk en jins God is myn God;

Hmong Lauj has rua nwg tas, “Tsw xob ua le ntawd, kuv
yuav moog rua koj lub chaw kws koj moog, hab kuv
yuav nyob huv koj haiv tuabneeg. koj yog kuv tug
Vaajtswv.”

tassws Luv has tas, “Tsw xob has kuas kuv tso koj tseg ncaim
koj rov qaab moog. koj moog hovtwg los kuv yuav moog hab,
koj nyob hovtwg los kuv yuav nyob hov ntawd hab, koj haiv
tuabneeg los yog kuv haiv tuabneeg hab, koj tug Vaajtswv
los yog kuv tug Vaajtswv.

Pokomchi eh je’ wili i xq’orarik reh i Rut: Maacanaa’ chih taj
i hin. re’ hin naa nub’anam aweh chupaam i ye’aab’
naa nuk’achariik ayu’. re’ hin naa nuk’achariik
awuuk’, eh re’ hin naa nukahniik chi nuDios, inki.

re’ Rut je’ wili i chaq’wik xub’an: Maa pahqaaj aakuyariik
weh re’ hin ma’ jaruuj nee tinukanaa’ kahnoq, xa aha’ pa’
nee tiooj i hat, nee wo’ kinooj chawiij, xa aha’ pa’ nee ti
k’achariik i hat ar nee kink’acharik i hin. eh re’ aatinamiit
re’ wo’ re’ nutinamiit i hin, eh re’ aaDios re’ wo’ re’ nuDios
i hin.

Turkmen Rut: oňa: “Sen nirä gitseň, men hem seniň ýanyňa
gitmerin. Sen nirä gitseň, men hem seniň halkym
bolaryn. Men seniň Hudaýym bolaryn.

emma Rut: “Seni terk edip ýanyňdan gitmegi menden haýyş
etme. sen Nirä gitseň, Menem şol ýere gitjek. sen nirede
bolsaň, Menem şol ýerde boljak. seniň halkyň - meniň halkym,
seniň Hudaýyň meniň Hudaýym bolar.

Sesotho yaba Ruthe o re ho yena: “O se ke wa tloha ho wena,
hobane ke tla ya le wena, ke tla ya le wena, mme
ke tla ya hona moo. setjhaba sa ka, le Modimo wa
hao.”

empa Ruthe a re: “O se ke wa nqobella hore ke kgaohane le
wena, kapa hore ke se ke ka tsamaya le wena, hobane” moo
o yang teng ke tla ya teng, moo o phelang teng ke tla phela
teng; tjhaba sa heno e be tjhaba sa heso, Modimo wa hao e
be Modimo wa ka.

Welsh a Ruth a ddywedodd, Nuw gael arnaf fi, atolwg,
atolwg, oddi wrthyt: canys lle yr wyt yn myned, ac
yno yr wyt yn myned, y byddaf fy hun. dy bobl yw
fy bobl, a’th Dduw yw fy Duw.

a Ruth a ddywedodd, Nac erfyn arnaf fi ymado â thi, i gilio
oddi ar dy ôl di: canys pa le bynnag yr elych di, yr af finnau;
ac ym mha le bynnag y lletyech di, y lletyaf finnau: dy bobl
di fydd fy mhobl i, a’th Dduw di fy Nuw innau:

Xhosa URute waphendula wathi: “Undiyekeli ukuba ndix-
hamle, kuba ndiza kuhlala apho uthanda khona.
mna ndiza kuba ngabantu bam, abe nguThixo
wam.”

Waphendula uRute wathi: “Sukundinyanzela usithi
mandikushiye. apho uya khona, nam ndiya kuya, ndiye
kuhlala nalapho uhlala khona, amawenu abe ngamawethu,
noThixo wakho abe nguThixo wam.

Indonesian tetapi Rut: menjawab: “Janganlah engkau mening-
galkan aku dan pulang ke tempat kediamanmu, se-
bab aku akan pergi dan berdiam di mana engkau
diam, sebab orang-orangmu akan menjadi umat-Ku
dan Allahmu.”

tetapi kata Rut: “Janganlah desak aku meninggalkan engkau
dan pulang dengan tidak mengikuti engkau; sebab ke mana
engkau pergi, ke situ jugalah aku pergi, dan di mana en-
gkau bermalam, di situ jugalah aku bermalam: bangsamulah
bangsaku dan Allahmulah Allahku;

Hungarian Ruth így felelt: Nem kérlek téged, hogy gondolj meg
téged, mert csak hozzád megyek, és én otthagytam,
hogy legyenek hozzád. a te népem az én, és az én
Istenem az én.

de Ruth azt felelte: Ne unszolj engem, hogy elhagyjalak és
visszatérjek tőled. mert ahová te mégy, odamegyek, ahol te
megszállsz, ott szállok meg. Néped az én népem, és Istened
az én Istenem.

Spanish y Rut: dijo a David: No me permite de ti, y me
quitaré de ti; porque donde vayas, yo iré a donde
vayas, y habitaré; y tu pueblo es mi pueblo, y tu
Dios es mi Dios.

respondió Rut: No me ruegues que te deje, y me aparte de
ti; porque a dondequiera que tú fueres, iré yo, y dondequiera
que vivieres, viviré. tu pueblo será mi pueblo, y tu Dios mi
Dios.

Table 6.8: Qualitative evaluation using SNG5 to translate into each target language.
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Chapter 7

Optimizing with Large
Pretrained Models

“The deepest connection you
have with someone and their
culture, is through learning their
language.”

Marisa J Taylor

Having examined various active learning methods in building a seed
corpus that optimizes machine translation, we are interested in increasing effectiveness

of how to best train on such a small seed corpus. To serve our main goal of minimizing
human translation and post-editing efforts, having minimized the seed corpus to ∼3% of
the text, and optimized which ∼3% of the text is to be translated first, we are interested
in how to best train on such a small sample of the text and produce the best translation
performance to minimize post-editing efforts. In this chapter, we will show how to most
effectively train using large pretrained models to minimize human post-editing efforts. We
find it most useful to adapt the large pretrained models to the domain first, and then to
the target low-resource language.

7.1 Introduction
A language dies when no one speaks it. A language needs attention when it is spoken by
enough people that it could survive under favorable conditions but few or no children are
learning it [62, 154, 313]. More than half of the 7,139 languages will die in the next 80
years [15, 81]. Many of these languages are low-resource. These languages may survive
and thrive if they gain prestige, power and visibility [62]. Frisian, for example, struggles
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Figure 7.1: A community in Peru that speaks Panao Quechua. Photograph provided by Mark
Bean.

to gain prestige in Germany, and is low-resource even though it has a large number of
speakers. Hebrew, conversely, has been revived as a spoken language because it is critical
to the development and identity of the Jewish community. We empower these language
communities by exercising a language1. This can be achieved by translating important texts
to their language so that these communities can gain information, knowledge, power and
visibility in their own language.

The problem in these scenarios, therefore, is not to build a high accuracy translation
engine for any texts using huge data corpora, but rather to build a good translation for a
known text (for which translations in many other languages exist), but in a new language
with only extremely little seed data (a few hundred sentences). We assume there is little to no
low-resource language data and few human translators. To produce high quality translation,
existing methods rely on a seed corpus produced by human translators. Previous work has
shown progress in using extremely small seed corpora with as small as ∼1,000 lines of data
and has found that active learning performs better than choosing a fixed portion of the
text to build a seed corpus [177, 234, 321]. However, researchers have yet to completely
solve the problem of using large multilingual models for representational learning to train

1The material in this chapter was originally published in LoResMT at ACL, 2023 [324].
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Figure 7.2: Translation workflow for low-resource languages, focusing on training on the seed
corpus followed by iterations of post-editing and updated training.

(or adapt) them to a new, low-resource language by training on an extremely small seed
corpus.

To solve this problem, we examine different training schedules and we find a strategic
way of growing large multilingual models in a multilingual and multi-stage fashion with
extremely small low-resource seed corpora.

In our translation workflow, human translators are informed by machine sentence ranking
to produce a seed corpus. To curate a seed corpus in the new, low-resource language where
we have no data initially, we pass the sentence ranking learned from known languages to
human translators. Human translators take this ranking, and translate the top few (∼1,000
or less) sentences, curating the seed corpus.

Using the seed corpus created by active learning, machine systems then train on the
seed corpus to produce a full translation draft. Human translators post-edit the draft, and
feed new data to machines each time they finish post-editing a portion of the text. In each
iteration, machines produce better and better drafts with new data, and human translators
find it easier and faster to post-edit. Together they complete the translation of the whole
text into an low-resource language (Figure 7.2).

To train on such small seed corpus, we find pretraining to be key. For the pretrained
model, we either create our own pretrained model by training on known languages, or use an
existing pretrained model. We explore both paths in our work, with and without activating
the knowledge in existing large pretrained models. We observe an average increase of 28.8
in chrF score over the baselines.

Our contribution is therefore: we activate the knowledge of large multilingual models by
proposing multilingual and multi-stage adaptations through 24 different training schedules;

103



Figure 7.3: 24 different training schedules.
[N]: multilingual model on N neighboring languages
[N+1]2: multi-target model with low-resource language
[N+1]: single-target model with low-resource language
[1]2: autoencoder in low-resource language.

we find that adapting pretrained models to the domain and then to the low-resource
language works best. Our model can stand on its own and can also be boosted by large
multilingual models. Our model works on many languages spanning different resource levels.

7.2 Methods
We translate a fixed text that is available in many languages to a new, low-resource language.
In our translation workflow, we first develop active learning methods to transfer sentence
ranking from known languages to a new, low-resource language. We then pass this ranking
to human translators for them to translate the top few (∼1,000 or less) sentences into the
low-resource language, curating the seed corpus. We finally train on the seed corpus, either
from scratch or from a pretrained model.

We build training schedules on an extremely small seed corpus. We propose and com-
pare 24 training schedules for machine translation into a new, low-resource language. To
compare all experiments fairly, we use the same translation system unit as a control for all
experiments, varying only the seed corpora built by different methods. We select the same
number of words in all seed corpora as most translators are paid by the number of words
they translate [33, 82, 288].
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7.2.1 Training Schedules
In our setup we have the new, low-resource language as the target language, and we have
a few neighboring languages as the source languages that are either in the same linguistic
language family or geographically close to facilitate linguistic transfer. In effect, we have
N source languages with full translations of the text and a new and low-resource language
that has an extremely small seed corpus, which could be a few hundred lines of data.

We use the state-of-the-art multilingual transformer prepending both source and target
language labels to each source sentence [117, 147]. For precise translation for all named
entities, we use an existing method of order-preserving named entity translation by masking
each named entity with ordered __NEs using a parallel multilingual lexicon table in 125
languages [311, 321].

Using this multilingual transformer architecture as a base, we build 5 training units
on the small seed corpus of the new, low-resource language and the existing translations
of known languages. We let [N]2 denote the training of all source languages in a N-by-N
multilingual transformer. We let [N+1]2 denote the training of all languages including the
low-resource language in a (N+1)-by-(N+1) multilingual transformer. We let [N+1] denote
the (N+1)-by-1 multilingual transformer that focuses on translating into the low-resource
language. We let [1]2 be the autoencoder on the low-resource language.

Our translation system is built on these 5 training units: an optional [M2M100] [91], [N]2,
[N+1]2, [N+1] and [1]2. These 5 stages increase in specificity while they decrease in data size.
Building on them, we show 24 different training schedules, among which 8 are pretrained
with in-domain data and 16 are pretrained with out-of-domain large multilingual models
(Figure 7.3). We only consider models with pretraining and therefore do not exhaust all 32
training schedules.

7.2.2 Active Learning Strategies
We have two baselines: the linguistic baseline of the excerpt-based approach, Luke, and the
statistical baseline of random sampling, Rand. The excerpt-based approach, which selects a
portion of the text with consecutive sentences, preserves the text’s formality, cohesion and
context but lacks global coverage. Random sampling increases global coverage but sacrifices
local coherence.

In addition to random sampling, we also explore n-gram, entropy and aggregation methods
as introduced in the previous chapter.

7.2.3 Evaluation Method and Metrics
Existing multilingual systems produce multiple outputs from all source languages, rendering
comparison messy. To simplify, we combine translations from all source languages into one
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Target L Family Source Languages

Frisian 0 Germanic English*, German, Dutch, Norwegian, Afrikaans, Swedish,
French, Italian, Portuguese, Romanian

Hmong 0 Hmong–Mien Komrem*, Vietnamese, Thai, Chinese, Myanmar, Haka,
Tangsa, Zokam, Siyin, Falam

Pokomchi 0 Mayan Chuj*, Cakchiquel, Mam, Kanjobal, Cuzco, Ayacucho, Bo-
livian, Huallaga, Aymara, Guajajara

Turkmen 1 Turkic Kyrgyz*, Tuvan, Uzbek, Karakalpak, Kazakh, Azerbaijani,
Japanese, Korean, Finnish, Hungarian

Sesotho 1 Niger–Congo Yoruba*, Gikuyu, Xhosa, Kuanyama, Kpelle, Fon, Bulu,
Swati, Venda, Lenje

Welsh 1 Celtic English*, German, Danish, Dutch, Norwegian, Swedish,
French, Italian, Portuguese, Romanian

Xhosa 2 Nguni Swati*, Gikuyu, Sesotho, Yoruba, Lenje, Gbaya, Afrikaans,
Wolaitta, Kuanyama, Bulu

Indonesian 3 Austronesian Javanese*, Malagsy, Tagalog, Ilokano, Cebuano, Fijian,
Sunda, Zokam, Wa, Maori

Hungarian 4 Uralic Finnish*, French, English, German, Latin, Romanian,
Swedish, Spanish, Italian, Portuguese

Spanish 5 Romance English*, German, Danish, Dutch, Norwegian, Swedish,
French, Italian, Portuguese, Romanian

Table 7.1: Summary of different target languages used [43, 59]. L, resource level, is from a scale
of 0 to 5 [148]. Reference languages used for active learning methods except aggregate methods
are starred.

by an existing centeredness method [321]. Using this method, we score each translated
sentence by the sum of its similarity scores to all others. We rank these scores and take the
highest score as our combined score. The expected value of the combined score is higher
than that of each source.

To compare effectively, we control all test sets to be the same. Since different experiments
use different seed corpora as training and validation sets, the training and validation sets
vary. Their complement, the test sets therefore also vary, rendering comparison difficult.
To build the same test set, we devise an intersection method. We take the whole text and
carve out all seed corpora, that is, all training and validation sets from all experiments. The
remaining is the final test set, which is the intersection of all test sets across all experiments.

Our metrics are: chrF, characTER, BLEU, COMET score, and BERTscore [230, 231, 241,
275, 305, 317]. We prioritize chrF over BLEU for better accuracy, fluency and expressive
power in morphologically-rich languages [217].
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↑chrF FrisianHmong PokomchiTurkmenSesotho Welsh XhosaIndonesianHungarian SpanishAverage

Baselines:
+ Bilin-
gual

23.1 25.0 28.7 18.9 25.2 22.2 21.4 27.2 20.1 22.1 23.4

+ Multi-
lingual

28.0 28.1 31.9 22.6 28.3 26.5 23.9 29.7 22.3 26.8 26.8

Our Models:
+ Sched-
ule B

50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5

+ Active
(AL)

53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4

Table 7.2: Results for translation into 10 languages that are new and severely low-resource to the
system, independent of M2M100.

↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
+ Bilingual 23.1 22.2 20.1 22.1 21.9
+ Multilingual 28.0 26.5 22.3 26.8 25.9
+ M2M100 26.0 9.9 38.8 47.5 24.9

Our Models:
+ Schedule I 53.5 49.5 42.2 53.2 49.6
+ Active (AL) 54.9 49.8 43.2 54.9 50.7

Table 7.3: Results for translation into 4 languages that are new and severely low-resource to the
system, activating knowledge in M2M100 and leveraging active learning.

7.3 Data
Existing research classifies world languages into Resource 0 to 5, with 0 having the lowest
resource and 5 having the highest [148]. We choose 10 target languages ranging from
Resource 0 to 5 (Table 7.1). For each target language we choose ten neighboring languages
as source languages (Table 7.1). These languages2 are Eastern Pokomchi, Hmong, and Frisian
(Resource 0), Turkmen, Welsh and Sesotho (Resource 1), Xhosa (Resource 2), Indonesian
(Resource 3), Hungarian (Resource 4), Chinese and Spanish (Resource 5) in Table 7.1. We
prioritize Resource 0 to 2 languages as real low-resource languages, and we use Resource
3 to 5 languages as hypothetical ones to show the spectrum. It is surprising to us that

2For simplicity, in Table 7.1 Pokomchi is Eastern Pokomchi, Hmong is Hmong Hoa, Kanjobal is Eastern
Kanjobal, Mam is Northern Mam, Cuzco is Cuzco Quechua, Ayacucho is Ayacucho Quechua, Bolivian is
South Bolivian Quechua, and Huallaga is Huallaga Quechua, Chinese is Traditional Chinese, Haka is Haka
Chin, Siyin is Siyin Chin, Falam is Falam Chin, Kpelle is Kpelle Guinea.
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Network I J K L M N O P Q R S T U V W X

[M2M100] ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1] ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[1]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

↑chrF 52.9 51.8 49.5 52.8 52.7 51.9 27.4 16.9 49.6 48.5 39.6 48.7 48.5 45.7 27.8 26.3
↓cTER 0.492 0.508 0.482 0.488 0.493 0.502 0.654 0.800 0.530 0.546 0.553 0.539 0.538 0.579 0.650 0.667
↑BLEU 28.8 27.9 24.2 28.9 28.8 28.2 3.0 0.6 24.8 24.2 13.9 24.3 24.5 22.0 3.4 3.3
↑COMET -0.56 -0.59 -0.63 -0.53 -0.56 -0.57 -1.28 -1.75 -0.67 -0.70 -0.89 -0.68 -0.69 -0.80 -1.21 -1.30
↑BERTS 0.891 0.889 0.886 0.892 0.891 0.890 0.813 0.775 0.883 0.881 0.861 0.882 0.880 0.873 0.823 0.819

Table 7.4: Comparing 16 training schedules with M2M100. BERTS is BERTScore, cTER is
characTER and LRatio is length ratio.

a lot of the Resource 0 languages are not too far away from the rich-resource languages.
Frisian, for example, are spoken near the Northern Sea near Netherlands and Germany, and
is in close proximity with a few rich-resource European languages [193]. However, because
of the close proximity with rich-resource languages, low-resource languages like Frisian
often suffer from lack of prestige and has a bigger threat to extinction as many younger
people choose to speak the rich-resource languages nearby. This also suggests interesting
research direction on low-resource languages and dialects that are in close proximity with
rich-resource language communities.

Among these ten languages, Frisian, Welsh, Hungarian and Spanish are on the list of
languages trained in M2M100 [91]. We apply a multi-stage adaptation of large pretrained
models to these four languages. During training, we use the large sentence-piece vocabulary
from M2M100 which contains 128k unique tokens for optimized performance.

To translate into these languages, our text is the Bible in 125 languages [196]. Each
low-resource seed corpus contains ∼3% of the text, while all other languages have full text.
Our goal is to translate the rest of the text into the low-resource language. In pretraining,
we use a 80/10/10 split for training, validation and testing, respectively. In training, we use
approximately a 3.0/0.2/96.8 split for training, validation and testing, respectively. Our
training data for each experiment is ∼1,000 lines. We use BPE with size of ∼3,000 for the
low-resource language and ∼9,000 for the combined [260].

Training on ∼100 million parameters with Geforce RTX 2080 Ti and RTX 3090, we use
a 6-layer encoder and a 6-layer decoder with 512 hidden states, 8 attention heads, 512 word
vector size, 2,048 hidden units, 6,000 batch size, 0.1 label smoothing, 2.5 learning learning
rate and 1.0 finetuning learning rate, 0.1 dropout and attention dropout, a patience of 5
after 190,000 steps in [N]2 with an update interval of 1000, a patience of 5 for [N+1]2 with
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Network A B C D E F G H

[N]2 ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓
[N+1]2 ⇓ ⇓ ⇓ ⇓
[N+1] ⇓ ⇓ ⇓ ⇓
[1] 2 ⇓ ⇓ ⇓ ⇓

↑chrF 38.7 51.1 35.6 50.8 43.4 51.2 25.6 24.1
↓cTER 0.555 0.517 0.572 0.515 0.523 0.507 0.650 0.682
↑BLEU 12.5 24.9 9.2 24.5 17.5 26.2 2.5 2.1
↑COMET -0.87 -0.66 -0.91 -0.65 -0.81 -0.63 -0.99 -1.02
↑BERTS 0.850 0.882 0.839 0.884 0.865 0.885 0.801 0.794

Table 7.5: Comparing 8 training schedules without M2M100.
[N]2: multilingual model on N neighboring languages
[N+1]2 : multi-target model with low-resource language
[N+1]: single-target model with low-resource language
[1]2: autoencoder in low-resource language.

an update interval of 200, and a patience of 25 for [N+1] and [1]2 with an update interval
of 50, “adam” optimizer and “noam” decay method [157, 217].

For finetuning from a M2M100 Model, training on ∼418 million parameters with Geforce
RTX 3090, we use a 12-layer encoder and a 12-layer decoder with 1024 hidden states, 16
attention heads, 1024 word vector size, 4,096 hidden units, 0.2 label smoothing, 0.0002
training learning rate and finetuning 0.00005 learning rate, 0.1 dropout and attention
dropout, a patience of 10, “BLEU” validation metric, “adam” optimizer and “noam” decay
method [85, 91, 254].

7.4 Results

For simplicity, we use the centeredness method to combine translations from all source lan-
guages and have one score per metric. To compare across different methods, all experiments
have the same test set (3,461 lines), the intersection of all test sets.

Our models improve over the baselines: With Schedule I, we observe an average
improvement of 24.7 in chrF score over the M2M100 baseline (Table 7.3). By active learning
with 4-gram model, we observe an increase of 28.8 in chrF score over the bilingual baseline.

Our strategic training schedule improves the translation further by activat-
ing the knowledge of M2M100 : With Schedule B and the 4-gram model, we observe
an average improvement of 18.6 in chrF score over the multilingual baseline (Table 7.2).
For Schedule I, the increase is 24.8 over the multilingual baseline (Table 7.3). Indeed, the
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
+ Luke 47.5 41.6 39.4 34.9 41.2 41.2 32.0 43.3 34.4 46.7 40.2
+ Rand 50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5

Our Models:
+ S 49.2 38.5 40.4 35.2 39.0 41.9 32.5 43.5 35.1 48.0 40.3
+ SN 50.9 43.9 43.2 38.3 41.6 43.2 36.1 46.9 36.7 50.3 43.1
+ SNG2 53.2 46.1 43.3 39.5 44.4 45.8 36.6 48.4 37.8 51.8 44.7
+ SNG3 52.7 46.0 44.5 39.6 45.5 47.5 36.8 48.9 39.2 52.3 45.3
+ SNG4 53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4
+ SNG5 53.0 45.6 43.9 39.7 45.4 46.7 36.8 49.1 38.4 52.5 45.1
+ ENTN 50.9 43.7 38.1 37.2 42.5 44.5 34.7 46.7 36.0 49.9 42.4
+ ENTK 52.7 45.7 43.5 40.2 44.6 45.2 36.4 49.0 39.1 51.8 44.8
+ AGGL

5 47.1 41.5 39.8 34.0 39.9 42.1 31.4 43.5 33.7 45.2 39.8
+ AGGF

5 45.0 38.4 38.5 32.4 38.8 47.1 30.4 41.2 33.3 44.2 38.9
+ AGGP

5 45.5 38.8 38.0 32.0 38.8 48.2 30.5 41.0 33.2 44.0 39.0
+ AGGN

5 45.4 39.1 38.3 32.4 38.8 48.0 30.7 41.2 33.2 44.3 39.1

Table 7.6: 140 experiments comparing 14 active learning methods translating into 10 different
languages with Schedule B.

increase with the activation of M2M100 is greater. This shows that our strategic schedules3

improve translation performance by activating the knowledge of M2M100.

7.4.1 Training Schedules

We compare 24 training schedules using a randomly sampled seed corpus (∼1,000 lines) to
translate into Frisian (Table 7.4 and 7.5).

Pretraining with [N]2 works well without M2M100: We compare 8 training
schedules without M2M100 (Table 7.5). We find that Schedule B (pretraining on [N]2 and
training on [N+1]2 and [N+1]) and Schedule F (pretraining on [N]2 and training on [N+1])
work well without M2M100. Schedule B gives a chrF score of 51.1 and Schedule F gives a
chrF score of 51.2.

M2M100 is useful when a target language and its corresponding source languages are in
the M2M100 list and the test set does not overlap with the M2M100 training set. However,
we strongly advise discretion, as training data for large pretrained models is usually not
clearly specified and most are not trained with low-resource languages in mind. M2M100
training data may very likely contain the Bible data, so it only serves as a comparison and
provides an alternative view to show that our model is robust with large models. When
M2M100 does not apply, our models pretrained with [N]2 suffice.

3In Table 7.2, our model with training scheduling uses Schedule B, our model with active learning uses
SNG4. In Table 7.3, our model with training scheduling uses Schedule I, our model with active learning
uses SNG4.
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↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
+ Luke 49.3 44.3 38.8 48.4 45.2
+ Rand 53.5 49.5 42.2 53.2 49.6

Our Models:
+ S 51.9 45.9 40.4 51.1 47.3
+ SN 54.8 47.4 42.3 53.2 49.4
+ SNG2 54.5 49.5 43.5 54.2 50.4
+ SNG3 54.4 50.4 43.9 54.5 50.8
+ SNG4 54.9 49.8 43.2 54.9 50.7
+ SNG5 54.5 50.1 43.5 54.1 50.6
+ ENTN 52.7 47.2 40.9 52.9 48.4
+ ENTK 54.6 49.4 43.5 53.8 50.3
+ AGGA

5 49.4 44.2 37.3 48.2 44.8
+ AGGS

5 46.5 49.8 36.4 46.4 44.8
+ AGGM

5 48.6 50.4 36.5 46.9 45.6
+ AGGT

5 48.8 50.8 36.4 46.9 45.7

Table 7.7: 56 experiments activating the knowledge in M2M100 with Schedule I.

Full stage training increases robustness: For models without M2M100 we can use
Schedule B (Table 7.6) or F (Table 7.9). Though the results for Frisian are similar, B is
much better than F for morphologically rich languages like Pokomchi, Turkmen and Xhosa.
Indeed, B with full training is more robust than F, which skips [N+1]2. Similarly, for models
with M2M100, we can use Schedule I (Table 7.7) or L (Table 7.8). Again, Schedule I with
full training stages perform better than Schedule L.

Applying M2M100 alone gives poor results: Schedule X produces poor results
(Table 7.4). Problems include catastrophic forgetting, bias towards rich-resource languages,
and unclean data. Existing research shows some released models mislabel their English
data as Welsh [236].

Mixed models with M2M100 perform well: A few training schedules beat those
pretrained with [N]2 (Table 7.5). Schedule I (training on 5 stages) gives a chrF score of
52.9, L (training 3 stages skipping [N+1] and [1]2) gives 52.8, M (training 4 stages skipping
[N+1]2) gives 52.7, J (training 4 stages skipping [1]2) gives 51.8, and N (training 3 stages
skipping [N+1]2 and [1]2) gives 51.9. All are higher than those without M2M100.

Adapting M2M100 to the domain and then to the low-resource language
works best: Schedule I (training on 5 stages) with score 52.9 performs best. These models
first adapt M2M100 to the domain by doing another pretraining on N2. After adapting
M2M100 to the domain, we adapt the model to the low-resource language by training on
[N+1]2. The final two stages [N+1] and [1]2 are optional.
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Our models and mixed models perform better than M2M100 alone: We examine
the selected sentences from different active learning algorithms and gain insight into how
sentences are chosen. M2M100 often produces extremely short sentences or repetition. Our
models do not have those issues.

7.5 Conclusion and Future Work
Our key contributions is that we compare 24 schedules with large pretrained models in
translation to low-resource languages. Our model is robust with large multilingual models.
We find that adapting large pretrained models first to the domain by training on all text
translations in existing source languages (N2), followed by adapting it to the low-resource
language by training on all translations including the low-resource data ([N+1]2) works
best. These two stages are the most essential while the rest is optional, and we recommend
Schedule I that trains on all 5 stages introduced in this chapter. This helps to minimize
human post-editing efforts during the subsequent iterations after translation of the seed
corpus.

While the industry trend is to move towards bigger models with bigger data, our mini-
malist approach not only uses fewer languages, but we also aggregate over fewer languages.
Our vocabulary size is ∼3000 for low-resource languages; this is in sharp comparison with
large multilingual models like M2M100 with vocabulary size 128,108 for 100 languages. This
saves computation power and resources, and therefore time and money, while improving
translation performance.

Evaluation is still a challenge. It is difficult to find native speakers and establish long-term
collaborations. There is also much variety among low-resource languages. Some are more
accessible than others and these might provide earlier, realistic evaluations of our method.
Hmong and Eastern Pokomchi are harder to assess while Frisian and Welsh, and many
Eastern dialects in southern China and Indonesia, offer easier access and evaluation. Once
we widen the set of low-resource languages by including more accessible ones, there are
more possibilities to evaluate less accessible ones. Empowering low-resource languages is
not just a technology problem. It requires much effort in communication and collaboration
with local communities. We welcome collaboration with native speakers to broaden our
research perspective and to deepen mutual understanding of its diversity and complexity.
Through our technologies, we would like to work with local communities to revive low-
resource languages by bringing more young people to speak and use those languages. This
will empower local communities and help them to flourish.

In the next chapter, we will focus on working with human translators in the field of
low-resource languages, and deploy the human machine translation workflow to evaluate
its effectiveness in the real-world.
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↑chrF Frisian Welsh Hungarian Spanish Average

Baselines:
Luke 49.1 41.7 38.3 48.7 44.5
Rand 52.8 46.8 41.9 52.9 48.6

Our Models:
S 51.6 44.8 40.7 52.0 47.3
SN 53.2 45.8 42.2 52.9 48.5
SNG2 54.2 47.6 42.5 53.8 49.5
SNG3 53.7 47.9 43.3 54.5 49.9
SNG4 54.3 48.5 43.2 54.4 50.1
SNG5 53.9 48.6 43.2 54.5 50.1
ENTN 52.1 44.8 40.7 52.4 47.5
ENTK 53.7 46.7 43.1 53.7 49.3
AGGA

5 48.4 43.2 37.1 48.4 44.3
AGGS

5 47.3 48.1 36.1 47.1 44.7
AGGM

5 46.9 47.8 36.3 47.2 44.6
AGGT

5 47.1 48.8 36.1 46.8 44.7

Table 7.8: 56 experiments integrated with M2M100 on Schedule L.

↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:
Luke 47.5 38.2 37.4 33.8 38.5 38.5 29.2 41.7 31.5 46.3 38.3
Rand 51.3 38.9 41.5 36.4 39.0 43.1 32.1 45.3 34.8 50.2 41.3

Our Models:
S 48.7 35.8 39.8 27.6 36.1 38.1 29.4 41.5 32.5 47.5 37.7
SN 50.9 38.4 41.5 36.9 38.7 41.1 32.5 44.8 33.1 49.2 40.7
SNG2 52.9 40.9 42.4 37.3 41.0 44.3 33.4 45.8 35.8 51.2 42.5
SNG3 53.1 41.8 43.2 38.4 41.9 45.6 34.0 47.0 36.4 52.2 43.4
SNG4 53.6 41.8 42.2 38.1 41.7 44.5 33.5 47.5 36.7 52.5 43.2
SNG5 53.0 41.5 42.0 38.1 42.3 45.1 33.5 47.3 36.4 52.2 43.1
ENTN 50.7 39.5 34.0 34.8 39.4 42.5 32.4 44.4 33.9 48.6 40.0
ENTK 52.5 42.4 42.3 38.5 41.6 43.4 33.6 47.1 37.1 51.7 43.0
AGGL

5 47.4 38.8 38.9 33.2 37.3 40.1 28.9 41.6 31.7 45.7 38.4
AGGF

5 44.6 36.0 37.1 30.9 35.8 44.3 27.8 39.2 30.7 43.9 37.0
AGGP

5 45.2 36.6 36.9 30.8 35.6 44.9 27.9 39.0 30.5 43.8 37.1
AGGN

5 45.4 36.8 37.1 31.3 35.7 46.0 28.0 39.2 30.2 43.8 37.4

Table 7.9: 140 experiments comparing 14 active learning methods translating into 10 different
languages on Schedule F.
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Seed Size Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Word
count

25695 31249 36763 17354 25642 25786 15017 22318 18619 22831 24127

Line count for each experiment
Baselines:
Luke 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151
Rand 1022 1001 1101 1045 976 1117 988 1065 1066 1023 1040

Our Models:
S 692 654 832 689 657 771 598 634 644 682 685
SN 1522 1399 1522 1524 1434 1595 1501 1601 1545 1488 1513
SNG2 1484 1350 1490 1454 1369 1557 1418 1513 1468 1463 1457
SNG3 1385 1319 1468 1416 1317 1439 1368 1451 1415 1365 1394
SNG4 1327 1295 1419 1367 1279 1409 1309 1426 1374 1310 1352
SNG5 1289 1289 1397 1311 1280 1381 1256 1359 1334 1273 1317
ENTN 1796 1721 1769 1840 1761 1914 1839 1967 1884 1805 1830
ENTK 1340 1287 1507 1266 1132 1405 1128 1358 1264 1327 1301
AGGA

5 984 1025 1060 998 967 1031 1016 1018 993 958 1005
AGGS

5 1049 1084 1152 1043 1025 1182 1147 1093 1076 1019 1087
AGGM

5 1058 1097 1159 1109 1025 1232 1159 1101 1087 1018 1105
AGGT

5 1048 1094 1153 1101 1020 1274 1141 1101 1087 1014 1103

Table 7.10: Seed Corpus Size for different target languages. The seed corpus gives rise to both
training data and validation data, therefore the training size is smaller than the above. Note that
all experiments for a given target language share the same number of words, although they have
different number of lines. Since each language use different number of words to express the same
meaning of a given text, we choose the number of words in the given book “Luke” as the standard
reference for each target language. For example, “Luke” in Xhosa contains 15,017 words while
“Luke” in Frisian contains 25,695 words.
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Chapter 8

A Quechuan Case Study

“The difference between the
right word and the almost right
word is really a large matter –
it’s the difference between
lightning and a lightning bug.”

Mark Twain

Having examined various active learning methods to build a seed
corpus in the low-resource language, and having explored multiple scheduling methods

to use large pretrained multilingual models to train on such a small seed corpus, we dive into
the real-life applications of translation into low-resource languages by working closely with
field linguists and human translators in Peru. In this chapter, we evaluate our progress from
all previous chapters through a case study of the Quechuan language family by working
with field linguist Mark Bean and his translation team. We show effectiveness of our model
and our proposed human machine translation workflow for translation of a multi-source
text into a new, low-resource language. We find that translation performance is significantly
positively correlated with language similarity. The more connected a language is, the higher
the translation performance. Furthermore, we find decluttering poorly-connected languages
improves performance. Using this finding, we show our results in translating into a new,
low-resource language called Sihuas Quechua.

8.1 Introduction
Machine Translation is not only a core scientific problem for Computer Science, but also a
cost-cutting business tool. The market for language services is estimated to be US $72.2
billions in 2023 [68, 143]. Many governments, businesses, international organizations like
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the European Union, and numerous global missions will accelerate in their spending on
translation services by US $20.83 billions during 2022-2026 in a recent forecast [182]. And
the total market for language services is forecast to climb to US $98.1 billions in 2028 [143].

Although the current market for translation into low-resource languages are relatively
small compared with the world’s spending on translation services, its potential market is
substantial. Indeed, translation into low-resource languages carries immense value in serving
the cultural goal of saving and reviving low-resource languages and the humanitarian goal
of assisting the everyday needs of local communities.

To serve the goal of cultivating and expanding potential translation markets in low-
resource languages, machine translation cannot stand alone. Large MT system outputs
have problems with repetition, mislabelled data, hallucination, inaccuracy, underproduction,
over-fitting and inconsistencies [36, 191, 280]. Neural MT systems often requires human post-
editing to produce readily publishable materials, independent of how evolved the models are
[66]. Systems adapted from large MT systems may have some improvements in translation,
but still have problems and need post-editing to produce publishable translations. Indeed,
post-editing and human checking is crucial in producing publishable materials [280].

Given the importance of post-editing and human checking, symbiosis is necessary be-
tween Machine Translation and human translation to accelerate and benefit the translation
industry. In our translation framework, our goal is to translate a text that is available in
multiple source languages to a new, severely low-resource language. To accomplish this
goal, we rely on the close collaboration between MT systems and human translators to
finish a high quality translation of the given text. We begin by performing active learning
methods to rank sentences in the given text on available languages. Once we finish ranking,
we inform human translators. After human translators obtain the ranking, they prepare the
translation of the top few ranked sentences (∼1,000 lines) to build our seed corpus. Once
human translators finish building the seed corpus, they pass it to MT systems. Using this
seed corpus, MT systems train and produce the first translation draft of the entire text in
the severely low-resource language. Working on this draft, human translators post-edit and
complete translation for a few portions of the text. These newly translated text is then fed
back to the MT systems to improve training and produce improved version of the draft.
Iterations of post-editing not only produce new data to improve translation quality by MT
systems, but also serve as a positive feedback loop and expedite the entire process. In this
way, human translators and MT systems work together to finish a high quality translation
of the text.

Having understood this translation workflow between MT systems and human translators,
we would like to know how it works in real life and evaluate the progress from all previous
chapters. In Table 8.1 and Table 8.2, we show the summary of results from the previous
chapters. We see that multilingual training by carefully selecting similar languages to
train with (Chapter 3, Chapter 4 and Chapter 5), active learning (Chapter 6) and staged
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↑chrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa IndonesianHungarian Spanish Average

Baseline 23.1 25.0 28.7 18.9 25.2 22.2 21.4 27.2 20.1 22.1 23.4

Our Models:
+ Chapter 3, 4, 5 28.0 28.1 31.9 22.6 28.3 26.5 23.9 29.7 22.3 26.8 26.8
+ Chapter 7 50.5 43.9 42.8 38.9 43.2 46.0 34.9 47.2 37.4 50.1 43.5
+ Chapter 6 53.6 45.7 44.4 40.3 44.9 47.7 36.8 49.1 39.0 52.7 45.4

Table 8.1: Result summary for translation into 10 languages that are new and severely low-resource
to the system, independent of M2M100.

↑chrF Frisian Welsh Hungarian Spanish Average

Baseline 23.1 22.2 20.1 22.1 21.9

Our Models:
+ Chapter 3, 4, 5 28.0 26.5 22.3 26.8 25.9
+ Chapter 7 53.5 49.5 42.2 53.2 49.6
+ Chapter 6 54.9 49.8 43.2 54.9 50.7

Table 8.2: Result summary for translation into 4 languages that are new and severely low-resource
to the system, leveraging knowledge in M2M100 and using active learning.

finetuning with large pretrained models (Chapter 7) improve translation performance in
our experiments. To evaluate improvements made from Chapter 3 to 7, and to translate our
progress in academic settings into the real-world applications, we work with field linguist
Mark Bean and his team in Peru on a case study of the Quechuan language family.

Working on this Quechuan case study, we show in this chapter that for well-connected
languages, our finding of multilingual training by carefully selecting similar languages to
train with (Chapter 3, Chapter 4 and Chapter 5), active learning (Chapter 6) and staged
finetuning with large pretrained models (Chapter 7) improve translation performance. For
poorly-connected languages, due to the low language similarity available for cross-lingual
transfer, the impact of our method could not be tested.

8.2 A Case Study on Quechuan Languages
To show effectiveness of our methods, we collaborate with field linguist, Mark Bean, and
his team who work closely with the low-resource Quechuan language communities in South
America, especially in the region of Peru. Mark and his team have been spending their lives
working closely with the Quechuan language community to translate the Bible text into
each of the target Quechuan languages.

Our goal in this case study on the Quechuan language family is three-fold. Firstly, we
aim to find out whether our method works in real-world translation efforts. Furthermore,
we want to determine under which conditions it is most favorable to apply our method to
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Figure 8.1: Sisters who speak Margos Quechua in Peru. Photograph by Mark Bean.

translate into the low-resource languages successfully. Lastly, in the instances where those
conditions are not met, we suggest a few future research directions to improve translation
quality.

8.2.1 History and Geography

The Quechuan language family is a varied group of languages covering a wide Andean
region of South America, stretching from Colombia, Ecuador, Peru, Bolivia to northwest
Argentina [137, 184]. There is broad spectrum of sociolinguistic diversity among Quechuan
languages throughout the Spanish colonial history of the area [77].

Quechua is widely spoken in a wide range of Peruvian Andes before the expansion of the
Inca Empire [57]. The Inca empire enforced Quechua as the official language during its rule
where many diverse dialects are developed, influenced by local languages [155]. For example,
Quechua is influenced by Aymara in the area of Cuzco, which is the old Inca capital [294].
In addition to the support of the Inca Empire, the Spanish rulers also helped Quechuan
languages to grow and flourish [87]. The Catholic church encouraged and facilitated the
first written form of Quechua [65].

Ethnologue has 45 Quechuan languages which are then divided into two groups: central
(Quechua I) and peripheral (Quechua II) [3, 81]. Within the categories, they are part of the
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ISO Code Language Total Books OT NT

quz Quechua, Cuzco 31099 66 23142 7957
quy Quechua, Ayacucho 31099 66 23142 7957
quh Quechua, South Bolivian 31099 66 23142 7957
qub Quechua, Huallaga 31099 66 23142 7957
qxo (qxoc) Quechua, Southern Conchucos 31099 66 23142 7957
qxo (qxoh) Quechua, Huacaybamba 31099 66 23142 7957
qve Quechua, Eastern Apurímac 31099 66 23142 7957
qvh Quechua, Huamalíes-Dos de Mayo Huánuco 31099 66 23142 7957
qvm Quechua, Margos-Yarowilca-Lauricocha 31099 66 23142 7957
qvw Quechua, Huaylla Wanca 31099 66 23142 7957
qwh Quechua, Huaylas Ancash 31099 66 23142 7957
qxn Quechua, Northern Conchucos Ancash 31099 66 23142 7957
inb Quechua, Inga 7957 27 0 7957
quf Quechua, Lambayeque 7957 27 0 7957
qul Quechua, North Bolivian 7957 27 0 7957
qup Quechua, Southern Pastaza 7957 27 0 7957
qvc Quechua, Cajamarca 7957 27 0 7957
qvn Quechua, North Junín 7957 27 0 7957
qvs Quechua, San Martín 8308 28 351 7957
qvz Quechua, Northern Pastaza 7957 27 0 7957
qxh Quechua, Panao 7957 27 0 7957
qws Quechua, Sihuas 7373 23 1494 5879

Table 8.3: Quechuan Family. “Total” is the total number of lines in the text, “OT” is the number
of lines in Old Testament while “NT” is that in New Testament, and “Books” is the number of
books translated. To differentiate Southern Conchucos from Huacaybamba, we use “c” and “h”.

dialect continuum as they mostly contain dialects spoken across the Peruvian Andean area
where they could be mutually intelligible if they are close enough [34]. However, languages
are not mutually intelligible across categories [167].

8.2.2 Key Languages in Analysis
We show the Quechuan family of languages1 we are working on in Table 8.3. We have
Quechuan languages that differ in resource levels: we have 12 languages that have com-
plete Bible text, and 9 languages that have at least New testament text, and 1 language

1Note that Huacaybamba Quechua and Southern Conchucos Quechua both have the ISO code “qxo”,
in other tables of this thesis, we will differentiate the two as “qxoh”(Huacaybamba) and “qxoc”(Southern
Conchucos).
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that only has a few stories translated. There are twelve Quechuan languages that has
complete translation of the Bible text: Cuzco Quechua, Ayacucho Quechua, South Boli-
vian Quechua, Huallaga Quechua, Southern Conchucos Quechua, Huacaybamba Quechua,
Eastern Apurímac Quechua, Huamalíes-Dos de Mayo Huánuco Quechua, Margos-Yarowilca-
Lauricocha Quechua, Huaylla Wanca Quechua, Northern Conchucos Ancash Quechua, Huay-
las Ancash Quechua. These languages have complete Bibles in both Old Testament and
New Testament. We also have nine other languages that have only partial translations of
the Bible, having at least the entire translation of the New Testament. They are: Inga
Quechua, Lambayeque Quechua, North Bolivan Quechua, Southern Pastaza Quechua, Ca-
jamarca Quechua, North Junín Quechua, San Martín Quechua, Northern Pastaza Quechua,
and Panao Quechua. The language that does not have the entire translation of the New
Testament is Sihuas Quechua. Sihuas has partial translations of the New Testament and a
few chapters from the Old Testament.

8.3 Data

We use both the partial and complete translations across 22 languages in Quechuan family.
We have the complete translations of the Bible data in 12 languages. These data include
both the Old Testament and the New Testament data. We also use the 9 languages that
has New Testament data. We have a language, Sihuas, that has only partial New Testament
and partial Old Testament data. There are three languages that we are focusing on in
our detailed qualitative evaluation, and they are: Margos-Yarowilca-Lauricocha Quechua
(Margos), Panao Quechua (Panao) and Sihuas Quechua (Sihuas) [77, 88, 268, 297]. There
is an existing translation of the complete Bible in Margos, however, there is no existing
translation of the Old Testament in Panao. Finally, no translation of the Old Testament
or the New Testament exists in Sihuas.

8.4 Results Analysis

We evaluate the effectiveness of our model by investigating the following questions: 1.)
Does our method presented in this thesis work in real-world translation? 2.) Under which
conditions does our method work, and under which conditions does it not work? 3.) When
our method works, how well does it work? 4.) When our method does not work, which
future research directions could we pursue to improve translation performance?

To answer these questions, we would like to examine the core focus of this thesis by
looking at the relationship between translation performance and language similarity. In
this section, we first look at language similarity and determine its correlation with MT
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Figure 8.2: Similarity matrix on Quechuan family (chrF).

performance in three different perspectives. After determining their correlation, we conclude
this analysis in translation into Sihuas Quechua, a new, low-resource language.

8.4.1 Similarity Analysis

We begin our analysis by examining language similarity. There are many methods to
measure language [53, 121, 212]. Most methods require information on typology [50, 60,
123, 226, 237, 277], World Atlas of Language Structures [60], and the Swadesh list [139].
Given severely low-resource scenarios in our use case, we do not make assumptions on
external resources, and we aim to measure language similarity in a light-weight manner by
only using the text we are translating.
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(a) Similarity matrix on 12 Quechuan languages. (b) Performance matrix on 12 Quechuan languages.

Figure 8.3: Comparison of similarity and performance matrices (chrF).

Using the given text, we measure language similarity between any two given languages
by looking at the text translations in them. We analyse sentence overlap (percentage of
matching sentences in both languages) and word overlap (percentage of matching words in
both languages). We also use metrics including characTER, chrf and 1-gram and 4-gram
BLEU [217, 230, 305] on translations in both languages.

Using these pair-wise similarity measures, we show a 22-by-22 similarity matrix for all
Quechuan languages in our case study using chrF metric in Figure 8.2 and a 12-by-12 close-
up version for the 12 Quechuan languages with full text translation in Figure 8.10. Margos
and Sihuas are in the dark green area (well-connected), Panao is in the almost white area
(poorly-connected). We clearly see that there is a strong language cluster among these 6
Quechuan languages: Huacaybamba Quechua, Huamalíes-Dos de Mayo Huánuco Quechua,
Northern Conchucos Ancash Quechua, Huaylas Ancash Quechua, Southern Conchucos
Quechua, and Margos-Yarowilca-Lauricocha Quechua. There is a less obvious language
cluster among 4 other Quechuan languages: Cuzco Quechua, Ayacucho Quechua, South
Bolivian Quechua, and Eastern Apurimac Quechua. Apart from these two language clusters,
the similarity matrix is mostly light green in other areas except for the language Sihuas
Quechua.

Sihuas Quechua, represented as last row and column in the similarity matrix in Figure
8.2, stands out as deep green. Even though Sihuas is the least resourced among the 22
languages, it is well connected to the main cluster we identified earlier and is similar to
each of the 6 languages in said cluster.
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Target Language chrf characTER 1-gram BLEU 4-gram BLEU

Quechua Huacaybamba 81.4 0.858 75.0 49.4
Quechua Huamalíes-Dos de Mayo Huánuco 60.0 0.518 56.2 23.0
Quechua Northern Conchucos Ancash 70.3 0.666 66.0 30.9
Quechua Huaylas Ancash 61.9 0.555 59.6 22.7
Quechua Southern Conchucos 80.4 0.793 77.4 46.8
Quechua Margos-Yarowilca-Lauricocha 83.2 0.835 80.1 54.7
Quechua Huaylla Wanca 27.6 0.231 32.1 3.9
Quechua del Huallaga Huánuco 52.5 0.417 45.5 12.8
Quechua Cuzco 39.9 0.328 33.7 4.7
Quechua Ayacucho 39.4 0.320 29.8 2.9
Quechua South Bolivian 41.4 0.317 37.2 6.2
Quechua Eastern Apurímac 43.2 0.310 33.9 5.7

Table 8.4: Key result summary of the round robin experiments.

In addition to chrF metric, we show the full set of language similarity matrices using chrF,
characTER, 1-gram BLEU, 4-gram BLEU, sentence overlap and word overlap in Figure 8.9.
We see that all 6 matrices are very similar, though having different levels of granularity. The
sentence overlap metric, for example, is the coarsest measure as every pair is mostly light
green. This is very intuitive because it is indeed rare that the same sentence is expressed in
the exactly the same way in two languages. For example, Margos has 5% sentence match
and 88% word match. The low percentage of sentence match could be caused by alignment
issues or close-to-zero edit distances that are not captured by this metric. Indeed, other
metrics like chrF, characTER, 1-gram BLEU, 4-gram BLEU offer more fine-grained analysis
portfolios for each language. The most fine-grained analysis is done through character-level
metrics like chrF and characTER.

8.4.2 How Similarity Affect Performance
Having explored various similarity measures on 22 Quechuan languages, we would like to
examine how similarity influences translation performance. We show three approaches in
this section: the round robin experiment, and the effects of adding and removing similar
languages. We examine each approach closely in the remaining section.

Round Robin Experiment

Firstly, we conduct a set of round robin experiments. To simplify our visualization and assure
data symmetry, we choose 12 languages with complete text translations for this set of exper-
iments: Cuzco Quechua, Ayacucho Quechua, South Bolivian Quechua, Huallaga Quechua,
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Spearman chrf characTER 1-gram BLEU 4-gram BLEU

Correlation 0.771 0.729 0.703 0.741
P-value 4.25 × 10−25 1.31 × 10−29 2.51 × 10−26 9.65 × 10−23

Table 8.5: Key result summary of correlation between performance and similarity.

Southern Conchucos Quechua, Huacaybamba Quechua, Eastern Apurímac Quechua,
Huamalíes-Dos de Mayo Huánuco Quechua, Margos-Yarowilca-Lauricocha Quechua, Huaylla
Wanca Quechua, Northern Conchucos Ancash Quechua, Huaylas Ancash Quechua.

For each round of the round robin experiments, we take one of these 12 languages as the
hypothetical target low-resource language, and assume that we only have New Testament
data for this language. Since all the other 11 languages have complete translations of the
whole Bible including both the Old Testament and the New Testament, we train on all the
11 complete Bibles and test on the Old Testament of the chosen target language. We use
DeltaLM as our large pretrained model for multi-stage adaptations [185].

For DeltaLM, we use the sentence-piece vocabulary that comes directly with it. This
vocabulary contains 250k unique tokens. We have tried to build our own vocabulary that
is morpheme-based; however, training with existing vocabulary works much better than
morpheme-based self-constructed vocabulary. Therefore, we use the default vocabulary with
250 unique tokens.

For training schedules, we train using both Schedule B (without using large pretrained
models) and Schedule J (using large pretrained models). For example, if we choose Margos
as the target low-resource language, we reach a BLEU score of 53.0 with Schedule B and
we have a BLEU score of 54.7 with Schedule J. Indeed, Schedule J is also preferred by the
field linguists through qualitative evaluation. For simplicity, we show results of Schedule J
in this section.

We show key results from the round robin experiments in Table 8.4. Each row represents
the combined score from all 11 source languages into the given target language specified in
the first column. We see that there is a wide spectrum of machine translation performance.
The experiment translating into Margos, for example, reaches a BLEU score of 54.7 and a
chrF score of 83.2. However, the experiment translating into Cuzco reaches a BLEU score
of 4.7 and a chrF score of 39.9. To understand this large difference in performance, we want
to establish the correlation of performance and similarity to the target language.

Correlation between Performance and Similarity

To understand the correlation between translation performance and language similarity,
we see that they are positively correlated in Figure 8.3. To visualize how translation
performance is driven by language similarity, we show similarity matrices and performance
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Figure 8.4: Effects of adding similar languages in translation into Margos

matrices for the 12 Quechuan languages we have shown earlier in Figure 8.11 and Figure
8.3. Comparing them side-by-side, we see their resemblance, especially at the 6-language
cluster that is dark green (well-connected area).

To determine the statistical significance, we take the column-wise Spearman correlation
between the performance matrix and the similarity matrix and show key results in Table 8.5.
For the chrF metric, we have a correlation of 0.771 between the performance matrix and
the similarity matrix. The associated p-value is 4.25 × 10−25, which shows high statistical
significance. A detailed analysis of Spearman correlation in all 4 metrics (chrF, characTER,
1-gram BLEU, 4-gram BLEU) shows extremely significant p-values and high correlation
scores in Table 8.5. Indeed, this shows that the more well-connected the target language is,
the higher the translation performance.

Having established the strong positive correlation between performance and similarity,
we show a more fine-grained comparison in Figure 8.11. The last column of this figure
shows the fine-grained correlation and p-value by each source language. We see that there is
strong positive correlation for languages close to the 6-language cluster while there is little
correlation for languages that are already far away from the other languages. This means
the more connected a language is, the more language similarity correlates with translation
performance. Moreover, the more connected a language is, the better the performance.
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Figure 8.5: Effects of removing similar languages in translation into Margos

Effects of Adding and Removing Similar Languages

Having established that the more connected a language is, the better the translation per-
formance, we now examine the relationship between translation performance and language
similarity from another perspective. In Figure 8.3a, we show the degree of connection be-
tween languages in varying shades of green. The darker green represents high similarity
and the lighter green represents low similarity. Using the varying similarity scores, we visu-
alize how similarity correlates with performance by measuring performance while adding
or removing similar languages.

We choose Margos as the target language to serve as the control, and rank other languages
according to their similarity to Margos. As we drop or add similar languages, we measure
the performance of our method with a varying number of source languages. We show the
effects of adding languages in Figure 8.4 and that of removing languages in Figure 8.5.
The x-axis is the chrF similarity threshold. For example, a threshold of 0.5 in Figure 8.4
means that the corresponding experiment only trains on source languages that achieves at
least a chrF score of 0.5. On the contrary, a threshold of 0.5 in Figure 8.5 means that the
corresponding experiment only trains on source languages that achieve a chrF score less
than 0.5.
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The optimal threshold for translating into Margos by adding languages is noticeably 0.5
chrF as shown in Figure 8.4, meaning that it is optimal to train on source languages that
are closer to the target low-resource language. Moreover, adding more distant languages
hurts translation performance.

Additionally, we find similar results by removing languages in Figure 8.5. If we were to
train on source languages that achieve a chrF score less than 0.7, we still maintain good
performance. However, once we move to 0.6, the performance plunges. This shows how
crucial source languages that are closer to the low-resource language are. Therefore, it is
important to keep these languages instead of removing them.

Both sets of experiments point to the same conclusion that choosing languages that
are very similar to the target language is key in achieving high translation performance.
Furthermore, decluttering poorly-connected languages helps to improve translation.

Understanding Poorly-Connected Languages

Having established that the more connected a language is, the higher the translation per-
formance, it is easy to understand why our multi-stage adaptation method works very well
with highly similar Quechuan languages as shown in Table 8.4. For example, the experiment
translating into Margos reaches a BLEU score of 54.7 and a chrF score of 83.2. However,
in the same round robin experiments in Table 8.4, we also observe that our multi-stage
adaptation method does not work as well with a few poorly-connected Quechuan languages
that are very different from the rest. For instance, the experiment translating into Cuzco
reaches a BLEU score of 4.7 and a chrF score of 39.9.

To understand this low performance with poorly-connected languages, let us focus on a
more detailed comparison between the performance matrix and similarity matrix in Fig-
ure 8.11. The last column of this figure shows the fine-grained correlation and p-value
by each source language. 8.11. The p-value is close to 0 for strongly-connected languages
while the p-value is very high for poorly-connected languages. In other words, there is a
significant positive correlation for strongly-connected languages while there is little corre-
lation for poorly-connected languages. This means the more connected a language is, the
more language similarity correlates with translation performance. Consequently, for poorly-
connected languages, we cannot deduce correlation between performance and similarity,
and their performance is therefore uncertain.

One potential reason for such poor performance is that the advantage of multilinguality
does not lend any leverage to the poorly-connected languages because generalization and
cross-lingual learning is hard. Another reason is very related to the practice of the human
translation team. In the past, translations are done through years. Each translation team
may translate a set of languages together using the same conventions and notations. When
a new translation team is formed, the new team may choose to use different notations and

127



System Translation Human Post-edits Edits

Tayta Diostam päyakö qamkuna kaqćhö
kaykar Crisputa y Gayullata bauti-
zanqäpita.

Tayta Diostami päyakö qamkuna kaqćhö
kaykar Crisputawan y Gayullata bauti-
zanqäpita.

2

Tsaymi mayqëkipis niyankimanku noqapa
shutëćhö bautizakuyanqëkita.

Chaymi mayqëkipis niyankimanku no-
qapa shutëćhö bautizakuyanqëkita.

1

Tsaynöllami Estéfanas castallata bauti-
zashqä. Tsaypita mastaqa manami pitapis
bautizanqäta yarpäku.

Chaynöllami Estéfanas castallata bauti-
zashkä. Tsaypita mastaqa manami pitapis
bautizanqäta yarpäku.

2

Table 8.6: Qualitative evaluation in translation into Sihuas.

conventions. This may result in a lot changes as it may affect the language documentation
process and could potentially add more difficulty in translating into languages that are
already poorly-connected.

One may ask, what could help translation into such poorly-connected languages? Does
adding more data help? In our experiments with one of the poorly-connected languages,
Panao Quechua, we initially have poor results. In order to help us have more data for
training, human translators translate more sentences and provide us with much more data
for training. With more data, our translation result remains poor. This could be because
when languages are far apart, multilinguality may not be realistically useful due to the
limited cross-lingual transfer learning.

Beyond the Quechuan Family

We have considered languages in the Quechuan family so far. However, we have not consid-
ered languages outside of the Quechuan family. Are there languages outside the Quechuan
family that are similar to the target language that we may use for training? To visualize
this, we measure similarity of 142 source languages to a given target language. We show
language similarity rankings for Margos (Figure 8.7a), Panao (Figure 8.7b) and Sihuas
(Figure 8.7c).

We find that Aymara [125], which is a South American native language spoken in a
nearby region (on the Altiplano) close to Peru, has relatively visible similarity with Margos.
However, the closest languages are still from the Quechuan language family. This means
that even though some Quechuan languages are very different from one another, they are
still closer to each other than those outside the Quechuan language family. Therefore, we
still recommend finding similar languages within the Quechuan family for translating into
any of the Quechuan low-resource languages.
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Figure 8.6: Output and reference length difference for two systems translating to Sihuas using
compare-MT [207]. The blue system translates using languages that are at least 0.6 chrF with
Sihuas, while the orange system trains on all.

8.4.3 Translation into Sihuas
Having understood that the more well-connected a language is, the higher the translation
performance, we identified Sihuas. Sihuas, though having the least resources, is very close
to the other Quechuan languages, especially to the 6 language cluster shown in Figure 8.3a.
We therefore conduct experiments to translate into Sihuas.

Translation Results

When we train on the incomplete translations of the New Testament and test on partial
translations of the Old Testament, we reach a BLEU score of 43.4 and a chrF score of 75.8
and a characTER score of 0.279. This indeed shows that the well-connected language is
easier to translate into.

Furthermore, applying what we learned about the threshold of closeness by adding and
removing similar languages from training, we conduct an experiment by training only on
languages that have similarity scores of at least 0.5 chrF with Sihuas. We improve our
translation score to 44.7 of BLEU, 75.2 of chrF and 0.248 of characTER. However, this is
not the most optimal. This shows that we improve translation performance by decluttering
poorly-connected source languages.

Finally, after working further with field linguists who speak Sihuas, we decide to train only
on languages that have similarity scores of at least 0.6 chrF with Sihuas, and we improve
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our translation score further to 46.3 of BLEU, 76.3 of chrF and 0.242 of characTER. This is
our final translation system for Sihuas. In Figure 8.6 and 8.14, we show that the system that
trains only on close languages performs better than the system that trains on all available
languages.

Comparing with Post-Editing Existing Source Texts

Having shown the high performance of our MT system that translates to Sihuas Quechua,
we compare our method with post-editing on existing source texts directly. Post-editing
existing source texts is what human translators could do without help from any MT systems.
Comparing these two is very meaningful to understand our contribution.

Our MT system is more effective than just post-editing existing books. If we post-edit
from the translation of the text in Huacaybamba, the closest language to Sihuas, we have
a chrF score of 68.3 and a BLEU score of 25.7 between Huacaybamba and Sihuas. Our
machine translation has a chrF score of 76.3 and a BLEU score of 46.3. Even though there
is a ∼8-point difference in chrF, there is a ∼20-point difference in terms of BLEU. Given
the ∼20-point BLEU difference, there could be a lot of words in Huacaybamba that is
similar to Sihuas, but not exactly the same. Our translation system is able to learn the
sub-word level morphology changes, and therefore make it easier for the human translators.

In addition to the ∼20-point BLEU difference, human translators benefit more from a
better post-editable draft of the text from our MT system, rather than post-editing from
source texts directly. Our MT system lessens the chance of errors and reduces the amount
of deletion, insertions and changes that human translators need to do to post-edit well.

8.5 Limitations and Future Work

From this Quechuan case study, we demonstrate that for well-connected languages, our
finding of multilingual training by carefully selecting similar languages to train with (Chap-
ter 3, Chapter 4 and Chapter 5), active learning (Chapter 6) and staged finetuning with
large pretrained models (Chapter 7) improve translation performance. For poorly-connected
languages, due to the low language similarity available for cross-lingual transfer, the impact
of our method could not be tested.

Our work is limited by the text and the translations of this text in different languages
in Quechuan family that is available to us in this chapter. However, the relationship
between similarity and performance is generalizable to other languages and language families.
In Chapter 5, we have examined the translation performance using our method for the
European medical EMEA dataset, have shown good performance. In Chapter 6 and Chapter
7, we have shown our method is generalizable to different target languages. However, all of
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our results in this thesis is limited by the text and the amount of data that is available to
us.

This limitation points us to many opportunities to extend this work. We are keen to
explore more varied target low-resource languages and language families. We are also open
to collaborate with more human translators working in other parts of the world to extend
our work to other domains including legal, literary and educational documents.

In addition to wider domains and more languages, another area of interest is to find
languages that may not be close to each other in the textual domain but in other domains
that we could use to improve translation. One potential method is to transform our data
from the textual space to the phonological space or other non-textual domains. In Figure
8.12, Figure 8.13 and Figure 8.7, we show typological features based on genetic, featural,
geographic, inventory, phonological and syntactic similarities. Comparing these features with
our similarity graphs in Figure 8.9, we see much richer connections among the Quechuan
languages. If we can find a way to transform our data into the phonological space and find
related languages to improve performance score, that will be very promising.

Furthermore, it is very important to explore what we can do when there are very few
similar languages. In the case for translating into Panao Quechua, translation performance
suffers as Panao is more distant from other languages in the textual form. We have tried to
build a Quechuan-specific morpheme vocabulary. However, once we change the vocabulary
from the large pretrained model to incorporate this Quechuan-specific morpheme vocabulary,
training diverges. It is difficult to train large pretrained models using the new vocabulary
in academic settings, but this gives room for creative solutions in future research.

Finally, there are continued conversations with the field linguists and human translators
working in the field. Understanding and working with their needs are key in building long-
term collaborative relationships. This process is a continued dialogue. It is through this
continued dialogue that we respect the dignity of both the indigenous low-resource language
communities as well as the field linguists working with the natives. It is also through the
same dialogue that the low-resource language community and field linguists learn to trust
machine translation systems. We would like to continue this process of mutual trust and
mutual understanding through continued conversations.

Having closely examined our case study of the Quechuan language family, we conclude
this thesis in the next chapter.
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(a) Margos. (b) Panao. (c) Sihuas.

Figure 8.7: Language rankings by similarity
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(a) Margos. (b) Panao. (c) Sihuas.

Figure 8.8: Language rankings by similarity with typological features.
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Figure 8.9: Similarity matrix based on chrF, characTER, 1-gram BLEU, 4-gram BLEU, sentence
overlap and word overlap.
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Figure 8.10: Similarity Matrix for 12 Quechuan languages (zooming into 12 main Quechuan
languages in Figure 8.9).
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Figure 8.11: Complete comparison similarity and performance matrices using chrF, characTER,
1-gram BLEU and 4-gram BLEU. The last column shows fine-grained correlation and p-value for
each source language.

136



Figure 8.12: Similarity matrix based on genetic, featural, geographic, inventory, phonological and
syntactic similarities [179, 188].
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Figure 8.13: Similarity matrix based on genetic, featural, geographic, inventory, phonological and
syntactic similarities for 12 Quechuan languages [179, 188].
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Figure 8.14: Detailed comparison between the system trained on only close languages that have
similarity scores above 0.6 chrF (blue) versus the system trained on all (orange) using compare-MT
[207].
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Chapter 9

Conclusion

“Words travel worlds.
Translators do the driving.”

Anna Rusconi

Earlier, we defined our thesis statement as the following:
THESIS STATEMENT In translating a closed text that is known in advance and
available in multiple source languages into a new and severely low-resource language,
we argue that generalization to out-of-domain texts is not necessary, but generaliza-
tion to new languages is necessary. Translation performance gain comes from mas-
sive source parallelism by careful choice of close-by language families, style-consistent
corpus-level paraphrases within the same language and strategic adaptation of existing
large pretrained multilingual models to the domain first and then to the language. Such
performance gain makes it possible for machine translation systems to collaborate with
human translators to expedite the translation process into new, low-resource languages.

To conclude, we summarize our contributions and describe how they support our thesis
statement. Moreover, we show the limitations of our research and propose different ways
to further this work in the future. We also discuss the broader impact of our work from
academic research to the real-world machine translation field.

9.1 Summary of Contributions
While we examine all of the following topics in the rest of the thesis, we summarize our
contributions to the research community through two main parts: 1.) massively multilingual
translation, and 2.) human machine translation as shown in Figure 9.1.

In severely low-resource scenarios, we explore ways to effectively learn from massive
source parallelism in Part I. In Part II, we build a human machine translation workflow for
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Figure 9.1: Recap of the work done as part of this thesis.

machine translation systems and human translators to work together seamlessly through
active learning and large pretrained models. We show proof of concept that it is possible
to produce a quality translation draft of the whole text through as little as a few hundred
lines (∼3% of the text) of the low-resource data. On top of demonstrating that it is possible
to translate using little resource, we build multiple mechanisms to improve effectiveness
and accuracy.

9.1.1 Key contributions
As discussed in Chapter 1, our goal is to minimize human translation and post-editing
efforts required to generate a full publishable-standard translation of the given text. Ideally
we want to hire a large number of human translators, measure and compare the resources
(time and money) used to translate the same text into a target low-resource language that
does not have any translations of the text under two scenarios: with and without the using
this thesis. However, this ideal solution is unrealistic especially in large translation projects.
Large translation projects in real-life usually takes decades, if not centuries of work, which
is beyond the scope of this thesis. This is why we transform our goal of minimizing human
translation efforts required to generate a full translation of the given text into two practical
proxy sub-goals as the following:

1. Optimizing and minimizing the amount of sentences to be used to construct seed
corpus.

2. Maximizing the quality and utility of MT-generated translation of the full text and
optimizing translation efficiency.

The first sub-goal of minimizing the seed corpus serves as a proxy in Chapter 6 to
minimize the human translation efforts in the creation of the seed corpus, while the second
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Figure 9.2: Key result of minimizing the amount of sentences to be used to construct seed corpus
for translation into Welsh.

sub-goal of maximizing translation performance serves as a proxy in Chapter 7 to minimize
human translation efforts in the post-editing process during the subsequent iterations.

To measure translation performance, our primary automatic metric in this thesis is chrF
[230]. We choose chrF for accuracy, fluency and expressive power in morphologically-rich
languages [217]. We use the metric chrF in Chapter 1 and Chapter 9 of this thesis to
motivate and summarize our main contributions of this paper.

Using chrF, we summarize the key contributions based on these two sub-goals in Figure 9.2
and Figure 9.3. Figure 9.2 shows our key results for the first sub-goal of minimizing the
seed corpus that serves as a proxy in Chapter 6 to minimize the human translation efforts
in the creation of the seed corpus. Figure 9.3 shows the second sub-goal of maximizing
translation performance that serves as a proxy in Chapter 7 to minimize human translation
efforts in the post-editing process during the subsequent iterations.

In Figure 9.2, our main contribution is that we minimize the seed corpus to be ∼3% of
the text, and we use ∼3% of the text to translate the ∼97% of the text in the low-resource
language we want to translate to. Having minimized the training data to be ∼3% of the
text in the given low-resource language, we optimize with active learning on which ∼3%
of the text to translate first to produce the seed corpus. To determine which ∼3% of the
text, we find that n-gram method (in particular, 4-gram method) is sufficient for producing
high translation performance when we do not have access to complete information about
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Figure 9.3: Key result of maximizing the quality and utility of MT-generated translation of the
full text.

languages close to the low-resource language we want to translate to. However, when we do
not have access to such information, we recommend the aggregation method proposed in
Chapter 6 as a universal ranking to use. This minimizes human translation efforts in the
production of the seed corpus. These are the key contributions for our first sub-goal.

Moreover, in Figure 9.3, we further show our key contributions for our second sub-goal.
We show the scheduling with large pretrained models using 4-gram method as our active
learning method gives the best translation performance. This helps to minimize human
post-editing efforts during the subsequent iterations after translation of the seed corpus.

The detailed contributions towards these two sub-goals by different chapters are described
in the following two sections. We also show the limitations of this work followed by potential
future research to accomplish the main goal beyond this thesis.

9.1.2 Massively Multilingual Translation

In Part I, we explore source parallelism in translation of a given text into new, low-resource
languages through massively multilingual training. In Chapter 3, we build cross-lingual
transfer both within a given language family and also across different language families. In
Chapter 4, we treat paraphrases within the same language as foreign languages, and train
on corpus-level paraphrases to improve translation performance. In Chapter 5, we build our
own linguistic distance metric based on translation distortion, fertility and performance.
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Massively Parallel Intra-family and Inter-family Learning: Our contribution in
building cross-lingual transfer, resolving the variable binding problem and producing high
quality translations under severely low-resource data scenario is three-fold, extending from
multi-source multi-target attentional Neural MT (NMT).

Firstly, to examine intra-family and inter-family influences, we add source and target
language family labels in training. Training on multiple families improves BLEU score
significantly; moreover, we find training on two neighboring families closest to the low-
resource language gives reasonably good BLEU scores.

Secondly, we conduct an ablation study to explore how generalization changes with
different amounts of data and find that we only need a small amount of low-resource
language data to produce reasonably good BLEU scores. We use full data except for the
ablation study.

Finally, to address the variable-binding problem, we build a parallel lexicon table across
twenty-three European languages and devise a novel order-preserving named entity transla-
tion method. Our method works in translation of any text with a fixed set of named entities
known in advance. Our goal is to minimize manual labor, but not to fully automate the
manual process to ensure the correct translation of named entities and their ordering.

Paraphrases as Foreign Languages: We treat paraphrases, rewordings of texts with
preserved semantics, as foreign languages, and train a unified NMT model on paraphrase-
labeled data with a shared attention in the style of multilingual NMT. Our main findings
in harnessing paraphrases in NMT are the following.

Our multi-paraphrase NMT results show significant improvements in BLEU scores over
all baselines. In addition, our paraphrase-exploiting NMT uses only two languages, the
source and the target languages, and achieves higher BLEUs than the multi-source and
multi-target NMT that incorporates more languages.

Furthermore, we find that adding the source paraphrases helps better than adding the
target paraphrases, and find that adding paraphrases at both the source and the target
sides is better than adding at either side. We also find that adding paraphrases with
additional multilingual data yields mixed performance; its performance is better than
training on language families alone, but is worse than training on both the source and
target paraphrases without language families.

Moreover, adding paraphrases improves the sparsity issue of rare word translation and
diversity in lexical choice.

Family of Origin and Family of Choice: Massively Parallel Lexiconized Iter-
ative Pretraining for Severely low-resource Machine Translation: We have five
contributions in building customized set of languages that are close to the severely low-
resource language.

Firstly, we rank the 124 source languages to determine their closeness to the low-resource
language and choose the top few. We call the linguistic definition of language family Family
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of Origin (FAMO), and we call the empirical definition of higher-ranked languages using
our metrics Family of Choice (FAMC). They often overlap, but may not coincide.

Secondly, we build an Iteratively Pretrained Multilingual Order-preserving Lexiconized
Transformer (IPML) training on ∼1,000 lines of low-resource data. Using iterative pre-
training, we get a +23.9 BLEU increase over a multilingual order-preserving lexiconized
transformer baseline (MLc) using English as a hypothetical low-resource language, and a
+10.3 BLEU increase over our asymmetric baseline. Training with the low-resource language
on both the source and target sides boosts translation into the target side. We have a 42.8
BLEU score for Portuguese-English translation on the medical EMEA dataset.

Thirdly, we use a real-life severely low-resource Mayan language, Eastern Pokomchi, a
Class 0 language [148] as one of our experiment setups. In addition, we also use English as
a hypothetical low-resource language for easy evaluation.

Fourthly, we also add an order-preserving lexiconized component to translate named
entities well. To solve the variable-binding problem to distinguish “Ian calls Yi” from “Yi
calls Ian” [95, 109, 322], we build a lexicon table for 2,939 Bible named entities in 124
source languages including more than 66 severely low-resource languages.

Finally, we combine translations from all source languages by using a novel method. For
every sentence, we find the translation that is closest to the translation cluster center. The
expected value of the BLEU score for our combined translation is higher than translation
from any of the individuals.

9.1.3 Human Machine Translation

In Part II, having examined source parallelism, we build a human machine translation
workflow algorithm for machine translation systems to collaborate with human translators
to expedite the process. In Chapter 6, we develop various active learning methods on
known languages and transfer ranking to the new, low-resource language. In Chapter 7, we
activate the knowledge of large multilingual models by proposing multilingual and multi-
stage adaptations through different training schedules; we find that adapting pretrained
models to the domain and then to the low-resource language works best. In Chapter 8, we
evaluate our work by translating academic progress to the real-world translation process
in a case study of the Quechuan language family.

Active Learning for Human Machine Translation: We use a random sampling
approach to build seed corpora when resources are extremely limited. We recognize that
the portion-based translation is very helpful in producing quality translation with formality,
cohesion and contextual relevance. Thus, our proposed way is not to replace the portion-
based approach, but instead, to get the best of both worlds and to expedite the translation
process. The two approaches differ in that the portion-based approach focuses on preserving
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coherence of the text locally, while the random-sampling approach focuses on increasing
coverage of the text globally.

Moreover, we compare three different ways of incorporating incremental post-edited data
during the translation process. We find that self-supervision using the whole translation
draft affects performance adversely, and is best to be avoided.

Furthermore, we also show that adding the newly post-edited text to training with
vocabulary update performs the best.

Train Global, Tailor Local: Minimalist Multilingual Translation into Low-
Resource Languages: We push the limits of random sampling and explore more active
learning methods. Our contribution is three-fold.

Firstly, we develop 14 active learning methods on known languages and transfer ranking
to the new, low-resource language.

Secondly, we activate the knowledge of large multilingual models by proposing multi-
lingual and multi-stage adaptations through 24 different training schedules; we find that
adapting pretrained models to the domain and then to the low-resource language works
best.

Thirdly, we aggregate scores from 115 languages to provide a universal ranking and
increase robustness by the relaxed memoization method.

Evaluation: We focus on the case study of the Quechuan language family. We find
that machine translation performance is significantly positively correlated with language
similarity. The more connected a language is, the better it is to translate into this language.
Furthermore, we find that decluttering poorly-connected languages improves translation
scores. Using this result, we demonstrate our methods in translating into a new, low-resource
language called Sihuas and achieve high quality translation performance.

9.2 Limitations
Having shown our contributions to the scientific community, we discuss the limitations of
our work based on system-level constraints, data-level constraints, task-level constraints,
evaluation-level constraints and machine-level constraints.

9.2.1 System-Level Constraints

Incompleteness

From Gödel’s incompleteness theorems [105, 106], we understand that there is no all-
encompassing “Theory of Everything” that unifies all that is provable and true. Gödel
argues that there exists mathematical statements that are undecidable within a formal
system, and such systems cannot prove its own consistency. This theory not only shakes
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the field of mathematics, physics, philosophy, Computer Science theory, and linguistics, it
also offers profound insights into the limitation of Machine Translation.

Applying Gödel’s incompleteness theorems, Machine Translation, a formal system, regard-
less of its depth and complexity, may not be able to solve every translation need. However,
we may still produce models that produce good enough translations that are useful to
humans. Indeed, 25 years after Gödel presented incompleteness theorem, Turing asked the
question “Can Machines Think?” and paved the road for Machine Translation [293]. Turing
didn’t propose that machines could think in the same way humans do, but he believed they
could simulate intelligent behavior to a point where it could be hard to distinguish humans
from machines.

Following Gödel’s and Turing’s thoughts, we could build machine translation systems
that produce good enough translations that are useful for communication. However, such
machine translation systems, like any formal system, are always incomplete and limited.

End-to-End Learning

In addition to Gödel’s incompleteness theorems, we also face limitations particular to end-to-
end systems. There are a few known weaknesses of end-to-end systems. For example, most of
the end-to-end networks depends on stochastic gradient descent where slow convergence or
getting stuck at local optima could be a real problem [104]. Moreover, end-to-end systems
suffer from interpretability [300], racial/gender bias [232], composability [274], resource-
demanding nature [198] and many other shortcomings [104].

Indeed, our work is limited by limitations inherent to all Machine Translation systems,
especially end-to-end learning systems.

Large Pretrained Models

Moreover, our work is also limited to the large pretrained models that are available to
us at the time of research for each chapter. In Chapter 7, we use large pretrained models
like M2M100. And in Chapter 8, we further use DeltaLM. The method of adapting large
pretrained models to the domain and then to the low-resource language is generalizable to
other large pretrained models. However, the effect of the translation performance gain we
present in this thesis is limited to the large pretrained models.

9.2.2 Data-Level Constraints

On top of limitations at the system level, we are also limited by the following data-level
constraints including data representation, data accessibility, and data design decisions.
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Data Representation

Our work is limited to the representation of our data in text form. From the extended
language similarity measures that we have shown in the previous chapter, even though
many Quechuan languages are phonologically close, they may be very far apart in written
form. Many local languages did not have a written form until a team of field linguists
started the documentation and translation process. The initial team of field of linguists
who started the process is therefore pivotal in determining the written form of the given
low-resource language. Different teams may have different conventions, methodologies, and
beliefs in how to best document and translate a language. Indeed, there are many factors
in determining the differences between written forms of two languages even though they
might be relatively close in the phonological space.

Without a multi-faceted data representation in many non-textual spaces including the
phonological space, our work is limited to the similarities and features machines can learn
from the written form. Indeed, our work is limited by the type of data. However, there is a
wider range of data beyond text that is helpful for us, that includes audio, video, pictures
and different varieties of multi-modal data.

Indeed, our research will benefit from more variety of data that includes audio, and video
data that covers wide range of domains.

Data Accessibility

In addition to the limitation of data representation, our work is limited to data accessibility
and copyrights. This work can be applied to any text, including large literary texts, instruc-
tion menus, infectious disease prevention brochures, immigrant welcome booklets. However,
most of these texts are copyrighted and not easily accessible. For those that are more
accessible, its translations in multiple source languages are usually non-existent, scattered
and not normalized. Training and testing on the Bible dataset is therefore a viable way for
testing our methods, as the Bible dataset is relatively accessible and consolidated.

However, even with the Bible dataset, different translations of the Bible carry different
copyrights. There are hundreds of completed Bibles, but we only have ∼125 that are
completed and available to us. A large number of completed Bibles are copyrighted and not
available to us. This limits the number of source languages we can train on. It also limits
the number target languages that we can test on as the chance of finding similar languages
for extremely low-resource and isolated languages in a relatively small dataset is low. Both
of the these limit the number of experiments we can do in this space.

Indeed, our work will thrive on more accessible data from a wider range of domains.
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Data Design Decisions

In addition to data representation and data accessibility constraints, we also face constraints
in our problem setup and data design decisions. In our problem setup, given a text that
is multilingually available in many languages, we are interested in translating it into a
new, low-resource language. The problem has three unique aspects that are different from
traditional MT problems: 1.) our text is closed, not arbitrary 2.) our text has complete
translations in all source languages 3.) our text has little to no translation in the target
low-resource language.

In this unique setup, we make a few design decisions that suit the purpose of automatic
evaluation needs. In designing experiments from Chapter 3 to Chapter 8, for each target
low-resource language that already has full translations of the text, we train on ∼3% of
the data, and test on ∼97% of the data. Since we are training on all source languages that
have complete translations of the text, we indirectly have access to the ∼97% of the data in
source languages as well. This is intended in our problem setup because we are translating
a closed text. Since machine translation systems and human translators have seen the full
text in many existing translations, we intend to encode the meaning of all of the sentences
in the text and decode it into the target low-resource language. This design decision is
limited by our unique problem setup and is suitable for this task. However, the training
and testing setup will be different if we work on open-domain and open text in the future.

9.2.3 Task-Level Constraints

In addition to limitations at the system level and the data level, we also face limitations at
the task level.

As we have discussed in Chapter 1, ideally we want to measure time taken and money
spent for the entire text translation project. However, this is beyond the scope of this thesis.
In order to set practical goals for the scope of this thesis, we use two practical proxy sub-
goals to transform our goal of minimizing human translation efforts required to generate a
full translation of the given text into tangible forms. These two sub-goals are:

1. Optimizing and minimizing the amount of sentences to be used to construct seed
corpus.

2. Maximizing the quality and utility of MT-generated translation of the full text and
optimizing translation efficiency.

As a result, we are not directly measuring the exact time and money used for completion
of the text translation with and without our methods, and we lack realistic meta-data of
the entire text translation process to complete the whole text. The translation process with
the ideas in this thesis includes seven stages:
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1. Language discovery stage: This is the hardest stage that researchers do not usually
focus on. There are many low-resource language communities that are very isolated
from the rest of the world. Some of these low-resource communities are extremely
suspicious and hostile towards outsiders [92, 249, 253]. Therefore, it is very important
to build a friendly first contact with the low-resource community, and discern whether
a language is a new language or a dialect. This is the language discovery process,
which may take a long time.

2. Language learning stage: This stage is also important as human translators learn
and formalize the orthography of the language. The orthography system is important
for standardization not just for the given target language, but also for future work on
similar languages.

3. Language literacy stage: After human translators have learned the language and
formalized the orthography, human translators need to teach local communities these
language tools if human translators want to involve native speakers in the subsequent
translation stages.

4. Seed corpus translation stage: This is what we focused on in detail in Chapter
6 on active learning. Machine systems provide different data selection methods for
human translators to produce the seed corpus.

5. Iterative post-editing stage: This is what we focused on in detail in Chapter 7
on large pretrained models. Machine systems optimize translation drafts for human
translators to post-edit on, while human translators provide more post-edited data
for machine translation systems to train on. Together, they complete a translation of
the whole text.

6. Quality control stage: This stage may involve multiple levels of focus groups,
including human translators, quality control teams and native low-resource language
speakers. The translated text needs to be checked to pass multiple standards before
it is released. In the case of Bible Translation, multiple focus groups performing
linguistic and theological checks are employed for accurate final translation of the
given text.

7. Document production stage: For any translation of a text, the final presentation
of the document may include chapter headers, footnotes, paragraph numbers, section
headers, titles and many various forms of formatting components. The document pro-
duction process is therefore much more than the content translation and is paramount
in the final publication of the translated text in the low-resource language.

Among the above seven stages of the text translation process, Stage 4 and 5 can be
accelerated by models and algorithms introduced in this thesis. However, since the entire
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text translation process contains five other stages that are beyond the scope of this thesis,
we face constraints of time and money estimation of the entire process in the real-world.

9.2.4 Evaluation-Level Constraints
In addition to limitations at the system level, the data level and the task level, we also face
limitations at the evaluation level.

Qualitative Evaluation

On top of automatic evaluation metrics like chrF, characTER that we may use for low-
resource languages that are often morphological-rich, our work is limited by human eval-
uation by native speakers. Most members of the research community do not speak the
low-resource languages, and it is difficult to find native speakers and establish long-term
collaborations.

There is also a lot of diversity across all low-resource languages. Some are more accessible
than others. Hmong and Eastern Pokomchi are harder to assess while Frisian and Welsh,
and many Eastern dialects in southern China and Indonesia, are easier to access. These
languages could potentially provide easier access and evaluation opportunities.

Empowering and reviving these languages is not just a scientific problem, it requires
communication, building trust with field linguists and native speakers and building long-
term connections with low-resource language communities. In this thesis, we collaborated
with a group of field linguists working on Quechuan language families. And in the future, we
are looking to broaden the collaboration to include more human translators, field linguists,
and native speakers.

Cultural-Aware Evaluation

Broadening our collaboration with native speakers and human translators is also important
for understanding the target low-resource language community culture. This work is limited
by the extent of our understanding of the native community culture. Cultural-aware trans-
lations and evaluation are key, especially in expressing subtleties in rhetoric [169, 172]. This
is especially relevant in non-Western communities where expressions are implicit rather
than explicit, and true meanings in communication might hinge on what is not said rather
than what is said. If we return to one of our earlier examples, when a host is asking “Is
your sake cold?”, what the host is actually saying is that “Would you like me to warm the
sake for you?”. If we translate the sentence without understanding the culture behind this
language, we may do a good job translating the sentence verbatim but completely miss
the main message that the speaker wants to get across. Therefore, we would like to model
culture-specific subtleties in the future work.
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9.2.5 Machine-Level Constraints
In addition to the limitations at the system level, the data level, the task level and the
evaluation level, we are also limited at the machine level. We use machines in academic
settings. All our research is done with 2 cards of Geforce RTX 1080 Ti, 2 cards of Geforce
RTX 2080 Ti and 1 card of RTX 3090. Our limitation is not just on the type of graphic
cards (especially the memory), but also on the number of graphic cards.

As we have mentioned in the previous few chapters, in situations when computing power
is a constraint, we usually devise parallel methods like relaxed memoization to compensate
for our limitation. Though clever algorithm and parallel computing could help us to achieve
good performance with limited resources, it could only help to a limited extent. In the
future, if we have computing power to train a text-specific pretrained large model using
our dedicated vocabulary on our own, we could achieve higher performance. Indeed, our
research would benefit with more accessible and stronger large scale computing power.

9.3 Future Directions
Given the limitations we face at the system level, the data level, the evaluation level and the
machine level, we are interested in pushing our research in the following future directions.
These future directions include: overcoming data-level constraints, broadening applications
and tasks, improving post-editing user experience, moving beyond limitations on large
pretrained models, and overcoming evaluation-level constraints.

9.3.1 Overcoming Data-Level Constraints
Firstly, to push the limitations of data representation, we are interested in venturing into
multi-modal learning, and translation into sign languages.

Multi-Modal Learning

Our work will benefit from a multi-faceted data representation in many non-textual spaces
including the phonological space. By venturing into speech and visual domain, our work
will no longer be limited to similarities and features machines can learn from the written
form. When two languages are not close in the written form, they might be close in the
phonological space or other non-textual spaces. By representing our data in multiple spaces
beyond text is helpful for us to identify and learn from other languages to better translate
into a new, low-resource language.

Looking beyond text, there is a wider range of data representations that is helpful for us.
It includes audio, video, pictures and different varieties of multi-modal data. Indeed, our
research will benefit from more variety of data that covers wider range of domains.
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Sign Language

Many researchers have worked on sign languages. Translation into sign languages in the
low-resource language communities is a very meaningful and important work. For example,
researchers find that a substantial portion of children in a native Nicaraguan community are
genetically inclined to be born deaf; and these deaf children learn and create sign languages
[199, 232, 256, 257, 258]. Translating into these low-resource languages where many children
are deaf is therefore centered on translating into sign languages. Many researchers have
ventured into sign language [153, 282], this is indeed a promising research direction.

Real-life Data Encoding

Working with real-life severely low resource languages presents a series of challenges that we
may not expect. For example, among the languages that have complete Bible translations
in our dataset, we have more than 66 real-life severely low-resource languages. Many of
such languages have “latin-1” encoding rather than “utf-8” encoding. And many of them
do not even have “latin-1” encoding. However, most transformer platforms work with only
“utf-8” encoding. Preprocessing takes a lot of effort. In the future, when we expand to other
datasets or other source languages, we will face more situations similar to this and we will
overcome them.

9.3.2 Broadening Applications and Tasks

Wider Range of Applications

On top of exploring more diverse data representation, we also would like to explore a
wider range of applications and datasets. In addition to the datasets that are used in this
thesis, we are interested in collaborating with more diverse teams to translate medical
and literary texts, including infectious disease prevention brochures, immigrant welcoming
booklet, instruction menus, large literary texts, movie scripts, and song lyrics. These texts
are helpful for low-resource language communities to understand and improve their own
welfare and healthcare and communication with the outside world.

Our method can be applied to the medical and healthcare domains which is immensely
valuable to the low-resource communities. In Chapter 5, we have applied our method to the
European medical dataset EMEA and achieved high translation performance [321]. EMEA
dataset is built by the European Medicines Agency and has a lot of medical information
that may be beneficial to the low-resource communities. However, existing dataset in EMEA
is limited to the European languages. Unlike European languages, a lot of severely low-
resource languages do not receive a lot of attention and have extremely limited budgets
in curating such useful datasets. In the future, if we can work with human translators
to curate multilingual dataset that includes many low-resource languages in the medical
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domain, this will be very helpful. One specific use case is the translation of COVID-19
guidelines. In an event of a global pandemic, many low-resource communities are affected
and there is immense value in creating a multilingual healthcare and medical dataset as in
the COVID-19 case. With such dataset, we could help to translate into many low-resource
communities. Indeed, use cases of our model in the healthcare and medical domains has
significant value.

In addition to the medical and healthcare domains, we are also keen in exploring the
education domain in all subject areas and levels that are relevant to the low-resource
communities. There are many textbooks and course materials that are in English, and
many are not in low-resource languages. There is tremendous value in translating and
providing access for such texts to help the low-resource communities to learn and flourish.
This is especially relevant in language preservation and revival for the young generations.
A low-resource language will have a better chance at flourishing when young children
are learning and speaking the low-resource languages rather than English. Indeed, there
is immense value in translating textbooks and educational materials into low-resource
languages in al subject areas and levels that are relevant.

Moreover, another example of future work that is very close to our research community
is improving communication between mainstream rich-resource language communities and
immigrants/refugees. Pittsburgh, like numerous European and North American cities, is
increasingly welcoming a growing number of refugees and immigrants from various countries
as the world becomes more globalized. While a lot of channels have been established to
help these refugees and immigrants, most of these channels are in English. It would be
much more helpful if such channels are in their own languages. For example, translating
driving manuals into their languages would immensely help them to transition into cities like
Pittsburgh. This not only helps the elderly population among these refugees and immigrants
who may not speak or understand English, but also helps those that do to feel home. This
will increase inclusivity and diversity.

Comprehensive Text Translation Tasks

As we have discussed in Section 9.2.3, there are at least seven stages in the text translation
process, among which 5 that we have not focused on in this thesis.

1. Language discovery stage: Building the friendly first contact, language discovery,
and the discernment process to determine whether a language is a new language or a
dialect, is very important.

2. Language learning stage: Human translators learns and formalizes the orthography
of the language.

3. Language literacy stage: Human translators teach local communities to involve
native speakers in the subsequent translation stages.
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(a) English (b) Eastern Pokomchi

Figure 9.4: Performance of the most difficult 11 books with increasing number of training books.

4. Seed corpus translation stage: This is what we focused in detail in Chapter 6 on
active learning.

5. Iterative post-editing stage: This is what we focused in detail in Chapter 7 on
large pretrained models.

6. Quality control stage: This stage may involve multiple levels of focus groups,
including human translators, quality control teams and native low-resource language
speakers.

7. Document production stage: For any translation of a text, the final presentation
of the document may include chapter headers, footnotes, paragraph numbers, section
headers, titles and many various forms of formatting components, and is important.

This thesis accelerates Stage 4 and 5. In the future, we are interested in building the entire
seven stages to complete full text translation process. This requires many number of years
and resources, and is a very important process.

9.3.3 Improving Post-Editing User Experience
In addition to exploring wider range of applications and datasets, we could also work with
human translators in the post-editing process to improve translation. There are a number
of ways that the machine translation system could optimize post-edits and use post-edits
to expedite translation.

Iterative Post-Editing

As discussed in Chapter 6, we show simulation of the iterative post-editing process for
translation into English and Eastern Pokomchi in Figure 9.4a and 9.4b. After producing
the first draft of the text by training a MT system on the seed corpus, we hold out the most
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difficult 11 books (the worst-performing 11 books) and set them aside as the test set for
evaluating the entire iterative post-editing process. Taking the most difficult 11 books as
the held-out test set, we divide the other 55 books of the Bible into 5 portions to simulate
5 iterations of post-editing process. Using this setup, we use Schedule B in 5 iterations
with increasing number of post-edited portions. Each portion contains 11 books, serving as
post-edited portion for each iteration. In each iteration, we simulate human post-editing
process by adding the actual translation of the given text portion to the MT system. MT
system produces better and better drafts and we show the improvement using the most
difficult 11 books.

This simulation gives an understanding of the iterative post-editing, however, it is just
a simulation. Going beyond simulation, we are interested in measuring and recording the
real post-editing process by working with real-life text translation process. In real-life text
translation process, there is coordination between different teams and translation stages.
This coordination process may influence the improvement of the translation over the entire
iterative process, and cannot be simulated. In the future, we look forward to see more work
between teams in completing the iterative post-editing process in real-life.

Iterative Learning From Post-Edits

The key of our research on Human Machine Translation is the close collaboration between
human translators and machine translation. In our work, once human translators receive
the machine translated draft, they post-edits a portion of the text. The machine then take
this newly post-edited portions and add to the training data, and therefore produce a better
draft. Iterations of post-editing and training improve and expedite translation.

In addition to using post-edited data as additional training data, we could also learn from
post-edits so that human translators do not need to repeat the same edits. For example,
in the case of Sihuas Quechua, the correct spelling is “chaymi” instead of the machine
translated “tsaymi”. The edits involves changing “ts” to “ch”. We could automate edits
like this to save time for the human translators so that they do not have to repeat their
edits.

Comprehensive Document Production

In addition to learning from post-edits from human translators, machine systems could
produce a comprehensive document translation rather than content translation. For any
translation of a text, the final presentation of the document may include chapter headers,
footnotes, paragraph numbers, section headers, titles and many various forms of formatting
components. The document production process is therefore much more than the content
translation. In this thesis, all of the input data are stripped of the formatting information
including titles, headers, and footnotes. Consequently, training with such inputs produces
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outputs that also does not contain such information. In real-world document translation
productions, these formatting issues are important. Therefore, we could aim to produce a
comprehensive document translation in the future.

To produce a comprehensive document translation, we could train on the completely
labeled document with all titles, headers and footnotes as inputs and aim to produce outputs
that contain such information. However, while some title and headers are well aligned,
footnotes may not be. Indeed, including such information may render data alignment and
structure incomplete. Incomplete data alignment and structure may affect the performance
of our multilingual training. Additionally, neural network beyond structured data is still
an active area of research [28, 263, 279]. Therefore, directly adding formatting information
to training may not be the best solution.

Instead of directly adding formatting information to training, we could add a pre-
processing stage and a post-processing stage where we create an external data structure for
the given document, and align titles and headers. For these aligned titles and headers, they
could follow the same translation mechanism as the main content of the document. For
footnotes, we can create a partial aligned data for training for the best possible translation.
This method has a strong potential of maintaining accurate structured prediction.

Furthermore, there are successes in industries where companies have successfully produced
comprehensive document translations. In the future, we are open to collaborate with
industry leaders to learn and to better our system so as to create a comprehensive document
production process for human translators.

Adapting to Different Writing Styles

In addition to comprehensive document production, our work could benefit from adapting
to more varied writing styles. We notice the writing style of the test data is not uniform.
For example, the text in the book of Mark usually starts with conjunctives. “en”, a Dutch
conjunctive word, is carried over to the translation output as almost every test sentence
begins with conjunctives. This is a unique writing style used by the author Mark, but is
not shared with other test data which is written by different authors.

When the writing styles of the test data differs from the training data, machine translation
systems encounter challenges. We would like to improve the translation performance of
testing on entirely different text with different writing styles. This is another way to minimize
the post-editing efforts and improve user experience for human translators.

9.3.4 Moving Beyond Pretrained Models Limits

As we have discussed in our limitations, the performance gain in this thesis is limited by the
large pretrained models we use. However, our finding of adapting large pretrained models to
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the domain and then to the language is universal and generalizable to other tasks, domains
and large pretrained models.

Current and Future Large Language Models

Based on this thesis, in the future we want to focus on adapting or fine-tuning a current
or future state-of-the-art multilingual Large Language Model to the task of translating a
known text into a new, and low-resource target language. This task is largely three-fold:

1. Learning vocabulary from the target low-resource language.
2. Learning to generate grammatical and coherent text in the target low-resource lan-

guage.
3. Learning to translate appropriate meaningful content into the target low-resource

language.
For the first sub-task, we could benefit from collaboration with human translators and

working with any available monolingual data in the given new, low-resource language. In
the case of Sihuas Quechua that we studied in Chapter 8, our human translators provides
us a list of morphemes in Sihuas Quechua that they learned during the language discovery
process before we work on text translation. This information is very valuable. In addition,
if there is any existing monolingual data in the given new, low-resource language, it will
contribute greatly to discovery of vocabulary and morphemes. There are large number of
low-resource languages that are morphologically rich, having monolingual data is not just
helpful for learning word vocabulary but also helpful for learning sub-word level morphemes.
Indeed, morpheme-related research in machine translation is difficult but important. From
our research, we find that if we replace the vocabulary from the BPE-based Large Pretrained
Models (which all the Large Pretrained Models present currently are) with morpheme-based
vocabulary, the results are very poor. In the future, this problem may be solved in multiple
ways including training our own domain-specific pretrained models with morpheme-based
vocabulary in the target new, low-resource language, which we will discuss in the next
section. Morpheme-level research is a very important future direction.

Moreover, the second and third sub-tasks could be tackled jointly. There is much we
could do based on the result of this thesis. Our method of adapting to the domain and then
to the language can still be used in today’s swiftly-evolving and fast-growing field of Large
Language Models. In the future, we are interested in working with current and future large
pretrained models and perform multi-stage adaptation to the domain first and then to the
new, low-resource language.

Resolving these three sub-tasks in the future is very important. Additionally, we also
would like to discuss training our own pretrained models suited to our task.
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Book chrF characTER 4-gram BLEU 1-gram BLEU Number of Lines

Esther 0.868 0.142 57.4 83.2 167
1 Chronicles 0.864 0.133 60.9 84.2 958
Haggai 0.862 0.111 59.9 83.2 38
2 Chronicles 0.859 0.14 57.1 81.7 824
Joshua 0.85 0.154 56.2 81.6 658
2 Kings 0.85 0.157 57.0 82.0 719
Ezra 0.843 0.143 58.9 82.6 280
Jeremiah 0.84 0.141 54.3 79.2 1365
1 Kings 0.835 0.165 58.0 81.7 831
Habakkuk 0.834 0.149 48.7 75.8 56

Table 9.1: Top 10 ranked Old Testament books translating into Quechua Margos.

Training Domain-Specific Pretrained Models

In addition, we will also benefit from training our own pretrained model in the future. If we
have computing power to train a domain-specific pretrained large model on all languages
in our dataset (∼145 languages) using our dedicated vocabulary, we could achieve higher
performance. If our dataset grows and we could train on more languages like a few key
companies, we could contribute to the community by translating the text into any given
language much more easily. When we train more future experiments, we want to work with
more massively parallel systems. Indeed, we will benefit from more computing power and
training our own domain-specific pretrained models.

9.3.5 Overcoming Evaluation-Level Constraints

More Fine-Grained Evaluation

In addition to improving post-editing user experience for human translators, we are inter-
ested in more fine-grained evaluation. In this work, we have used a few different automatic
evaluation metrics. In addition to the varying evaluation metrics, there are many different
ways to create a more fine-grained evaluation mechanism.

To build a more fine-grained evaluation system, we first need to understand that our
test data is not uniform as we have discussed before. For example, the Bible has 66 books,
covering different topics, genres and writing styles. The book of “Psalms” is poetry-based
while Paul’s letters like “Romans” are very philosophical. So far, we have looked at the the
entire text as a whole. We would like to work with more fine-grained translation evaluation
on all 66 books of the Bible. In Table 9.1, we show the top 20 performing Old Testament
books when we test on the Bible based on a small portion of Margos data. Choosing books
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that are best helped by Machine Translation could inform human translators the sequence
of post-editing steps. We have explored this briefly in Chapter 5. In the future, we would
like to work with human translators iteration-by-iteration as rankings produced by each
iteration differs from each another.

Continued Dialogue with Native Speakers

In translations into low-resource languages, oftentimes we as researchers do not speak these
languages. This makes qualitative evaluation really hard. We may be able to understand
the named entities. For example, in the case of translation into Eastern Pokomchi, we can
read some of the named entities “Jesús”, “Galilea”, “Simón” and “Andres” in the machine
translated text “Eh noq ojik i rub'an i Jesús juntar i k'isa palaw i Galilea, xrilow reje i
Simón ruch'ihil i Andres, re' i rutuut i k'isa palaw, ruum jinaj i k'isa palaw barco”. However,
we cannot read and speak Eastern Pokomchi which is a Mayan language and we do not
know anybody who speaks it. If we can work with native speakers of Eastern Pokomchi, it
would greatly help with qualitative evaluation.

There are continued conversations with field linguists and human translators working
in the field. Understanding their needs is pivotal in building a long-term collaborative
relationship that benefits both sides. This process is a continued dialogue. It is through this
continue dialogue that we respect the dignity of both the indigenous low-resource language
communities as well as the field linguists working in the field, while they learn to trust
machine translation systems through time. We would like to continue this process of mutual
trust and mutual understanding of both sides through continued conversations.

9.4 Broader Impact
Our work is done with the intention of reviving and empowering low-resource languages,
and more importantly, reviving the communities who speak low-resource languages. We
want to lift up people and communities who are otherwise not in the spotlight of the world’s
attention. Lifting up low-resource language communities with this work, we aim to bring
diversity, inclusivity, and equity to different language communities. And we want to provide
NLP solutions that are inclusive and accessible to people across the world.

This could bring voices to low-resource language communities, understanding needs of
the elderly population among the low-resource language speakers, dissemination of infec-
tious disease prevention information, welcoming immigrants and refugees from low-resource
language communities with books in their own language, educating deaf children in the
low-resource language communities, communicating and bridging the low-resource commu-
nities with the world through translating large literary texts, movies and songs into the
low-resource language.
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9.5 Key takeaways

We have a few key takeaways from this thesis. Given data scarcity in the low-resource
scenarios, we explore ways to effectively learn from massive source parallelism in Part I.
We then build a human machine translation workflow for machine translation systems and
human translators to work together seamlessly through active learning and large pretrained
models in Part II. We show proof of concept that it is possible to produce quality translation
draft of the whole text through as little as a few hundred lines (∼3% of the text) of the
low-resource data. In addition to demonstrate that it is possible to translate using little
resource, we show various ways to improve effectiveness and accuracy.

Firstly, in Part I, we examine how source parallelism benefit translation of a given text
into new, low-resource languages through massively multilingual training. In Chapter 3, we
build cross-lingual transfer both within a given language family and also across different
language families; we showed that training with two close-by families typically builds
sufficiently good cross-lingual transfer in multilingual training. We also propose an order-
preserving lexiconized machine translation model to resolve the variable binding problem
and producing high quality lexiconized translations under severely low-resource scenarios.
In Chapter 4, we treat paraphrases within the same language as foreign languages, and
train on corpus-level paraphrases to improve translation performance. We find that our
multi-paraphrase translation models improve performance better than multilingual models
and improves the sparsity issue of rare word translation as well as diversity in lexical choice.
In Chapter 5, we build our own linguistic distance metric based on translation distortion,
fertility and performance. We propose a method, Iteratively Pretrained Multilingual Order-
preserving Lexiconized Transformer (IPML), to train on low-resource language data. We
push the limit by using only ∼1,000 lines (∼3.5% of the entire text) to translate the whole
text and achieved good translation performance using IPML.

In Part II, having examined source parallelism, we build a human machine translation
workflow algorithm for machine translation systems to collaborate with human translators
to expedite the process. In Chapter 6, we first develop various active learning methods
on known languages and transfer ranking to the new, low-resource language. Secondly,
we activate the knowledge of large multilingual models by proposing multilingual and
multi-stage adaptations through different training schedules in Chapter 7; we find that
adapting pretrained models to the domain and then to the low-resource language works
best. Thirdly, we aggregate scores from 115 languages to provide a universal ranking
and increase robustness by relaxed memoization method. In Chapter 8, having examined
both source parallelism and human machine translation workflow, we evaluate our work
by translating academic progress to the real-world translation process in a case study
of the Quechuan language family. We collaborate extensively with a translation group
with in-depth knowledge of various Quechuan languages and focus on evaluation. We find
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that machine translation performance is significantly positively correlated with language
similarity. The more connected a language is, the better it is to translate into this language.
Furthermore, decluttering poorly-connected languages improves translation performance.
Using this finding, we show our results in translating into a new, low-resource language
called Sihuas Quechua.
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[11] Dimitra Anastasiou and Reinhard Schäler. Translating vital information: Localisation,
internationalisation, and globalisation. Syn-thèses Journal, 3:11–25, 2010. 1, 3.1

[12] Antonios Anastasopoulos, Sameer Bansal, David Chiang, Sharon Goldwater, and
Adam Lopez. Spoken term discovery for language documentation using translations.
In Proceedings of the Workshop on Speech-Centric Natural Language Processing, pages
53–58, 2017. 2.1.1, 3.1

[13] Philip Arthur, Graham Neubig, and Satoshi Nakamura. Incorporating discrete trans-
lation lexicons into neural machine translation. In Proceedings of the 21st Conference
on Empirical Methods in Natural Language Processing, 2016. 3.2.2

[14] Peter Austin and Andrew Simpson. Endangered languages, volume 14. Buske Verlag,
2007. 2.1.2

[15] Peter K Austin and Julia Sallabank. The Cambridge handbook of endangered lan-
guages. Cambridge University Press, 2011. 2.1.2, 7.1

[16] Amittai Axelrod, Xiaodong He, and Jianfeng Gao. Domain adaptation via pseudo
in-domain data selection. In Proceedings of the 16th Conference on Empirical Meth-
ods in Natural Language Processing, pages 355–362. Association for Computational
Linguistics, 2011. 3.3.2

[17] Wilker Aziz, Sheila Castilho, and Lucia Specia. PET: a tool for post-editing and
assessing machine translation. In Proceedings of the 8th International Conference on
Language Resources and Evaluation, pages 3982–3987, Istanbul, Turkey, May 2012.
European Language Resources Association (ELRA). URL http://www.lrec-conf.
org/proceedings/lrec2012/pdf/985_Paper.pdf. 2.3.3

[18] Rafael E Banchs and Marta R Costa-Jussà. A semantic feature for statistical machine
translation. In Proceedings of the 5th workshop on syntax, semantics and structure
in statistical translation, pages 126–134. Association for Computational Linguistics,
2011. 3.4.1

[19] Sameer Bansal, Herman Kamper, Sharon Goldwater, and Adam Lopez. Weakly
supervised spoken term discovery using cross-lingual side information. In Acoustics,
Speech and Signal Processing, pages 5760–5764. IEEE, 2017. 2.1.1

[20] Julia Barrett. Support and information needs of older and disabled older people in
the uk. Applied ergonomics, 36(2):177–183, 2005. 3.1

[21] Regina Barzilay and Kathleen R McKeown. Extracting paraphrases from a parallel
corpus. In Proceedings of the 39th Annual Meeting on Association for Computational
Linguistics, pages 50–57. Association for Computational Linguistics, 2001. 4.2.1

166

http://www.lrec-conf.org/proceedings/lrec2012/pdf/985_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/985_Paper.pdf


[22] Christos Baziotis, Barry Haddow, and Alexandra Birch. Language model prior for low-
resource neural machine translation. Proceedings of the 25th Conference on Empirical
Methods in Natural Language Processing, 2020. 2.2.3, 5.2.1

[23] Stephen Beale, Sergei Nirenburg, Marjorie McShane, and Tod Allman. Document
authoring the bible for minority language translation. Proceedings of 10th Biennial
Machine Translation Summit, 2005. 3.4.1

[24] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009. 6.4.2

[25] Luisa Bentivogli, Nicola Bertoldi, Mauro Cettolo, Marcello Federico, Matteo Negri,
and Marco Turchi. On the evaluation of adaptive machine translation for human
post-editing. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(2):388–399, 2015. 1.3

[26] Luisa Bentivogli, Mauro Cettolo, Marcello Federico, and Federmann Christian. Ma-
chine translation human evaluation: an investigation of evaluation based on post-
editing and its relation with direct assessment. In Proceedings of the 15th Interna-
tional Workshop on Spoken Language Translation (IWSLT 2018), pages 62–69, 2018.
1.3

[27] Alexandre Bérard, Zae Myung Kim, Vassilina Nikoulina, Eunjeong Lucy Park, and
Matthias Gallé. A multilingual neural machine translation model for biomedical data.
In Proceedings of the 1st Workshop on NLP for COVID-19 at the 25th Conference
on Empirical Methods in Natural Language Processing, 2020. 2.1.1

[28] Monica Bianchini, Giovanna Maria Dimitri, Marco Maggini, and Franco Scarselli.
Deep neural networks for structured data. Computational intelligence for pattern
recognition, pages 29–51, 2018. 9.3.3

[29] Alexandra Birch, Miles Osborne, and Philipp Koehn. Predicting success in machine
translation. In Proceedings of the 13th Conference on Empirical Methods in Natural
Language Processing, pages 745–754, 2008. 5.2.1

[30] Steven Bird. Decolonising speech and language technology. In Proceedings of the
28th International Conference on Computational Linguistics, pages 3504–3519, 2020.
2.1.1, 5.1, 6.4.1

[31] Steven Bird and Edward Loper. NLTK: The natural language toolkit. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages
214–217, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/P04-3031. 13, 6.2.2

167

https://aclanthology.org/P04-3031


[32] Damián Blasi, Antonios Anastasopoulos, and Graham Neubig. Systematic inequalities
in language technology performance across the world’s languages. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics, 2022. 2.2.3,
6.2.2

[33] Michael Bloodgood and Chris Callison-Burch. Bucking the trend: Large-scale cost-
focused active learning for statistical machine translation. Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, 2010. 1.3, 6.2, 7.2

[34] Frederic Blum, Carlos Barrientos, Adriano Ingunza, and Zoe Poirier. A phylolinguistic
classification of the quechua language family. 2023. 8.2.1

[35] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. Transactions of the Association for Compu-
tational Linguistics, 5:135–146, 2017. ISSN 2307-387X. 9

[36] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Syd-
ney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brun-
skill, et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021. 2.3.3, 8.1

[37] Lynne Bowker. Computer-aided translation technology: A practical introduction. Uni-
versity of Ottawa Press, 2002. 2.3.1, 6.1

[38] Lynne Bowker and Des Fisher. Computer-aided translation. Handbook of translation
studies, 1:60–65, 2010. 2.3.1, 6.1

[39] Florin Brad and Traian Rebedea. Neural paraphrase generation using transfer learning.
In Proceedings of the 10th International Conference on Natural Language Generation,
pages 257–261, 2017. 4.2.1

[40] John S Brownstein, Clark C Freifeld, Ben Y Reis, and Kenneth D Mandl. Surveil-
lance sans frontieres: Internet-based emerging infectious disease intelligence and the
healthmap project. PLoS medicine, 5(7):e151, 2008. 2.1.1

[41] Chris Callison-Burch, Colin Bannard, and Josh Schroeder. Scaling phrase-based
statistical machine translation to larger corpora and longer phrases. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, pages 255–262.
Association for Computational Linguistics, 2005. 4.2.1

[42] Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical ma-
chine translation using paraphrases. In Proceedings of the 6th Conference of the
North American Chapter of the Association for Computational Linguistics on Human
Language Technologies, pages 17–24. Association for Computational Linguistics, 2006.
4.1, 4.2.1

168



[43] Lyle Campbell and Anna Belew. Cataloguing the world’s endangered languages,
volume 711. Routledge New York, USA, 2018. (document), 6.3, 7.1

[44] Michael Carl, Barbara Dragsted, and Arnt Lykke Jakobsen. A taxonomy of human
translation styles. Translation journal, 16(2):155–168, 2011. 2.3.1, 6.1

[45] Jasone Cenoz. The effect of linguistic distance, l2 status and age on cross-linguistic
influence in third language acquisition. Cross-linguistic influence in 2nd language
acquisition: Psycholinguistic perspectives, 111(45):8–20, 2001. 3.1, 3.3.2, 5.3.2

[46] Sin-wai Chan and David E Pollard. An Encyclopaedia of Translation: Chinese-English,
English-Chinese. Chinese University Press, 2001. 3.4.1

[47] Guanhua Chen, Shuming Ma, Yun Chen, Li Dong, Dongdong Zhang, Jia Pan, Wenping
Wang, and Furu Wei. Zero-shot cross-lingual transfer of neural machine translation
with multilingual pretrained encoders. Proceedings of the 26th Conference on Empir-
ical Methods in Natural Language Processing, 2021. 2.2.3

[48] Guanhua Chen, Shuming Ma, Yun Chen, Dongdong Zhang, Jia Pan, Wenping Wang,
and Furu Wei. Towards making the most of cross-lingual transfer for zero-shot neural
machine translation. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 142–157, 2022. 2.2.3

[49] Barry R Chiswick and Paul W Miller. Linguistic distance: A quantitative measure
of the distance between english and other languages. Journal of Multilingual and
Multicultural Development, 26(1):1–11, 2005. 5.2.2

[50] Koel Dutta Chowdhury, Cristina España-Bonet, and Josef van Genabith. Under-
standing translationese in multi-view embedding spaces. In Proceedings of the 28th
International Conference on Computational Linguistics, pages 6056–6062, 2020. 5.2.2,
8.4.1

[51] Christos Christodouloupoulos and Mark Steedman. A massively parallel corpus: the
bible in 100 languages. Language resources and evaluation, 49(2):375–395, 2015. 3.4.1

[52] Alexandra Chronopoulou, Dario Stojanovski, and Alexander Fraser. Reusing a pre-
trained language model on languages with limited corpora for unsupervised nmt.
Proceedings of the 25th Conference on Empirical Methods in Natural Language Pro-
cessing, 2020. 2.2.3, 5.2.1

[53] Hyung Won Chung, Dan Garrette, Kiat Chuan Tan, and Jason Riesa. Improving
multilingual models with language-clustered vocabularies. Proceedings of the 25th
Conference on Empirical Methods in Natural Language Processing, 2020. 5.2.2, 8.4.1

[54] Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio. A character-level decoder
without explicit segmentation for neural machine translation. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, pages 1693–

169



1703, 2016. 3.2.1
[55] Kenneth L Clarkson and Peter W Shor. Applications of random sampling in com-

putational geometry, ii. Discrete & Computational Geometry, 4(5):387–421, 1989.
2.3.2

[56] Lauren Eby Clemens, Jessica Coon, Pedro Mateo Pedro, Adam Milton Morgan, Maria
Polinsky, Gabrielle Tandet, and Matthew Wagers. Ergativity and the complexity of
extraction: A view from mayan. Natural Language & Linguistic Theory, 33(2):417–467,
2015. 5.4, 5.5, 6.4.1

[57] Father Bernabe Cobo. History of the Inca Empire: an account of the Indians’ customs
and their origin, together with a treatise on Inca legends, history, and social institutions.
University of Texas Press, 2010. 8.2.1

[58] Paulo Coelho. The alchemist. HarperOne; 25th edition, 2015. (document), 6.1
[59] Richard Oliver Collin. Ethnologue. Ethnopolitics, 9(3-4):425–432, 2010. (document),

6.3, 7.1
[60] Bernard Comrie. The world atlas of language structures. Oxford University Press,

2005. 5.2.2, 8.4.1
[61] Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield,
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hero: On the limitations of zero-shot language transfer with multilingual transformers.
In Proceedings of the 25th Conference on Empirical Methods in Natural Language
Processing, pages 4483–4499, 2020. 2.2.3, 5.2.1, 5.3.2

[171] Jennifer Lee. Frozen, 2013. (document), 6.1
[172] Lori Levin, Donna Gates, Alon Lavie, and Alex Waibel. An interlingua based on

domain actions for machine translation of task-oriented dialogues. In Proceedings of
the 5th International Conference on Spoken Language Processing, 1998. 3.3.2, 3.6,
4.6, 9.2.4

[173] Haiying Li, Arthur C Graesser, and Zhiqiang Cai. Comparison of google translation
with human translation. In The 27th International Flairs Conference, 2014. 2.3.1,
6.1

[174] Zheng Li, Mukul Kumar, William Headden, Bing Yin, Ying Wei, Yu Zhang, and Qiang
Yang. Learn to cross-lingual transfer with meta graph learning across heterogeneous
languages. In Proceedings of the 25th Conference on Empirical Methods in Natural
Language Processing, pages 2290–2301, 2020. 2.2.3, 5.2.1
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