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Abstract

Despite their ubiquity, trained neural models remain a challenging subject
for explainability, with neural net researchers applying what might be considered
esoteric and arcane knowledge and skills to understand what the models are learning
and how the internal workings of the models change their learning outcomes.
Understanding what these models are learning is a field of utmost importance as
more and more production systems rely on neural models to provide more and more
high-impact utilities.

This work lays out an interpretability methodology, built on a design philosophy
for neural models that redefines the unit of analysis for these models from individual
neurons to a set of interconnected functional components which we call neural path-
ways. These functional components, which are a consequence of the architecture,
data, and training scheme, have the capacity to cut across structural boundaries.
This enables a method of functionally-grounded, human-in-the-loop model un-
derstanding through increased transparency, encouraging a dialogue between the
models and the researchers.

Over the course of this work for this thesis, we contribute to the literature in four
ways: First, we provide the method for neural model interpretability at the subtask
level, rigorously validating it against a suite of synthetic datasets. Second, we extend
the method by providing a framework for aligning learned functional components
to causal structures. This enables the comparison of the learned functions of a
neural model with a theoretical causal structure allowing for rapid validation of our
understanding of how a neural model is approaching a task. Third, we expand the
method to compare and align functional components across models with differing
architectures or training procedures. And lastly, we demonstrate the capabilities of
the neural pathways approach in several domains of education technologies. This
includes automatic essay feedback via rhetorical structure analysis, group formation
via transactivity detection, and automated essay scoring.

This last contribution can be further specified into three facets separated by
their domains and foci. First, neural pathways are employed to scaffold a neural
discourse parser to more easily generalize to student writing. Next, we demonstrate
that neural pathways can be used as a method for error analysis by exploring the
discrepancy in performance between models trained on detecting transactivity in
different domains. And lastly, we demonstrate the capability of tracking changes in
problematic pathways across fine-tuning an AI writing detector.

With the broad applicability of the neural pathways approach, we are optimistic
that the method can have a wide impact on the the design and development of neural
models and we aim to provide a foundational work that has the capability of being
extended far beyond the scope of the thesis.
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1 Introduction
In recent years, the study of neural networks has witnessed a remarkable surge, revolu-
tionizing benchmark modeling tasks across various fields. Yet, as we dive deeper into
these advancements, a pivotal challenge emerges: the models’ complexity often renders
them inscrutable, even to seasoned researchers. The analogy of ”fortune tellers reading
tea leaves” captures the mystique of our attempts to decode these models. This obscurity
is not merely academic; as our reliance on neural models in real-world applications
grows, understanding their inner workings becomes crucial.

Presently, the intricate techniques employed to interpret neural networks primarily
cater to those deeply versed in the field’s mathematics, and while progress is being
made across the interpretability field, this exclusivity not only limits accessibility but
also poses a potential bottleneck to the technology’s broader application. This thesis
seeks to add to the body of literature new tools to illuminate the learned functions of
neural models. By contributing towards closing the knowledge gap, we aspire not just to
enhance researchers’ ability to construct better models, but also to enable better choices
regarding which model to begin with from the outset.

This work contributes to the body of interpretability of neural models in a way that
redefines the unit of a neural model from a set of interconnected structural components,
such as weights and architectures, to the set of interconnected functional components
which we call, as a reference to the biological inspiration for this approach, neural
pathways. These functional components, which are a consequence of the architecture,
data, and training scheme, have the capacity to cut across structural boundaries as shown
by the body of published work covered by this thesis. This enables a method of human-
in-the-loop model selection through increased transparency. While the scope of this
thesis is firmly targeted at increasing the capabilities of machine learning researchers,
the broader aim is to offer the capability for a wide array of domain experts to be able to
select from among models to achieve a desirable trade-off between task performance and
acceptability of decision making processes (e.g., in terms of avoiding harmful biases).
This neural pathways approach is a method to probe into complex neural models to
recover functional groups of neurons and align them with reasonable task knowledge
heuristics.

We explore this problem through the domain of education technologies including
automatic essay feedback via rhetorical structure analysis, group formation via transac-
tivity detection, and the automatic detection of machine generated writing. The field of
education technologies provides a strong test bed for this work as it is a domain with
many more domain experts as compared to machine learning researchers. Furthermore,
being able to identify learned substructures within models may be able to provide a finer
grained approach to identifying areas for feedback that were not explicitly trained for.
The task of transactivity detection has shown a high affinity for transfer learning from
generic NLP inference tasks to small datasets. Identifying transferred learned compo-
nents may provide insight for identifying methods to identify good task candidates for
transfer learning.

The challenge in explaining models erodes confidence in users, particularly in
fields where accurate results are critical, such as medicine and education (Chitti et al.,
2020; Fan et al., 2021), who must turn to models with lower performance but higher
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transparency, like expert systems. In other cases, a lack of understanding for how the
models works results in a misguided trust in the systems (Li and Suh, 2021) that we, as
machine learning researchers, have the responsibility to ensure are safe.

It is of the author’s opinion that building trust in neural networks requires a deeper
insight into how they operate. While it important to note that this thesis can not and is
not promising an instant or comprehensive solution to all trust issues surrounding neural
models. Rather, our aim is to offer a fresh perspective that helps in better understanding
these models, which can enable, through continued effort and future research, a path
toward solving these grand challenges of interpretable AI.

1.1 Research Questions
Furthering this work, we consolidate the previous model analysis lessons of this work
into a suite of tools to provide greater transparency for neural models that can allow
for a human-in-the-loop selection process based not only on model accuracy, but also
qualitative aspects of a model’s functional pathways. This requires a new type of
evaluation method as compared to other model selection techniques as prior automatic
model selection has focused primarily on accuracy or other related performance metrics
rather than the pathway aware selection we propose. Through this project we will be
examining the research questions: Can we isolate connected modules within a neural
network that can be transferred to other model architectures? Does this method provide
a way to maintain desirable internal learning outcomes through the model interpretation
process when compared to other interpretability methods?

To address the first research question and as an anchor point for future research, an
evaluation of the feasibility of identifying sub-components of trained neural models and
inserting those components into models for tasks for which the sub-component may be
useful will need to be done. This would take the form of extracting components from
models and selectively transferring components to tasks. Evaluating the performance
of the selectively transferred components as compared to the whole embedding and
other methods for selective knowledge embedding would give a strong indication of its
feasibility.

To address the second question, we apply the the neural pathways approach to
several domains and datasets to demonstrate how the method can advance the neural
model design process. This takes the form of using pathways as auxiliary features, using
pathways for error analysis, and using pathways for model comparison.

Answering these questions would open up an alternative approach to neural network
design that enables researchers the flexibility to define what knowledge is to be used
by the model to increase trust in the system through transparency of the functional
components within. Furthermore, it may, in the long term, lead to an added benefit of
enabling non-machine learning domain experts to join the conversation of neural model
design, challenging the view that there is a best neural architecture and fostering the
view that there should be a focus on how the architecture interacts with the data.
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1.2 Thesis Overview
This thesis divides the work into two parts, each with three chapters. The first part
introduces the core contribution of this work, neural pathways, and the theoretical
foundation for their method of analysis and limitations. The second part applies the
neural pathways approach to real world problems to demonstrate that pathway aware
model selection and construction can provide benefits for expanding the state-of-the-
art in numerous domains. After the two principal parts, we conclude a summary of
contributions to the work and a discussion of the broad potential future work that can be
enabled beyond the scope of the thesis.

1.2.1 Neural Pathways and Causality

Neural Pathways as Functional Components: Building on the concept of neural
network probing tasks (Conneau et al., 2018), we present how abstracting away from
the neurons to neural pathways allows for a competitive correlational analysis with a
reduced quantity of dimensions. We compare these methods on two common natural
language task: Recognizing Textual Entailment (RTE) (Dagan and Glickman, 2004)
and Named-Entity Recognition (NER) (Sang and Meulder, 2003). In this chapter we
present the mechanism used to extract neural pathways from a neural model.
Neural Pathway Alignment with Bayesian Networks: Neural probes and, by ex-
tension, the original formulation of neural pathways is a strictly correlational method
for analysis. However, as our goal is to know how a neural model reaches a decision,
we present a method for aligning pathways with causal structures. In order for this to
function, we alter the neural pathways approach from a factor analysis method to a
latent variable method. This allows us stricter theoretical guarantees when interfacing
from the realm or correlation to that of causation. Furthermore we introduce a metric
for alignment between a causal structure and the extracted neural pathways.

For this section we devise synthetic data whose causal structure can completely be
known for our experiments. This allows us complete control and the ability to verify the
method and discover its limitations, a key component for all of the following work that
builds on this foundation.
Complete Neural Pathways Approach with Model Comparison: With the interest
to make this method as accessible as possible and to further validate the process, we
provide a detailed walk-through of the method, addressing each of the key decision
points on the way to building a complete interpretation of a model. We rigorously
define the boundaries within with the method can operate in and what questions can be
answered.

Like the previous chapter, this section requires the use of synthetic data in order for
all aspects of the causal structure to be available for exhaustive experimentation.

1.2.2 Applications of Neural Pathways

Utilizing High Salience Neural Pathways to Improve Generalizability of RST
Parsing on Student Writing: For rhetorical analysis driven automatic essay feedback,
we examine models for predicting rhetorical moves and steps as described by Swalesian
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genre theory and for parsing trees defined by rhetorical structure theory. The model for
predicting rhetorical moves and steps is trained on the Research Writing Tutor corpus
and reaches near human performance on the task. The model is then dissected using
several common neural interpretation approaches as a multifaceted approach to explore
the inner workings of the model.

The efficacy of utilizing the inner workings of a model to develop a stronger model
is explored in a neural rhetorical structure parser that, using knowledge of its inner
working to influence added components, saw increased performance on the RST parsing
task on both the standard dataset for RST parsing and a dataset composed entirely of
student writing.
Neural Pathways in Transfer Learning: For transactivity detection we look into
how attention based models handle transferable learning between generic language
technologies tasks and specific domain specific datasets. By choosing pretraining tasks
with sufficiently similar concepts required, we found we could apply deep learning
approaches to datasets with sizes that would be generally unreasonable to use neural
networks for and get significant improvement over simpler models that would ordinarily
be used on smaller datasets.
Identifying Propagation of Problematic Pathways in Fine-Tuned AI-Writing Detec-
tors:

Finally, we delve into the intricacies of foundation models, particularly in relation
to AI writing detection, spotlighting the evolution of potential biases in a RoBERTa-
based AI-writing detection model during fine-tuning. A significant stride made is the
introduction of a novel AI-writing detection dataset tailored for student compositions,
enriching the current pool of such datasets and aiding in pinpointing bias origins. Our
detailed exploration of the fine-tuning dynamics within LLM’s neuron groups has
unearthed mechanisms and patterns crucial for understanding bias amplification during
model training. Additionally, our findings underscore the inherent risks in relying too
heavily on a limited set of pretrained foundation models for diverse tasks, highlighting
the persistence of key functional components and their associated biases.

1.2.3 Conclusion and Future Directions

In the concluding chapter of this dissertation, we look ahead to potential developments
in the field of neural network interpretability. It is the authors hope that this work serves
as a starting point, prompting further research and refinement. The methods presented
here could be expanded to encompass a wider range of models and datasets. Moreover,
the core ideas have the potential to influence and assist in the advancements in other
areas of machine learning. This next chapter outlines such future directions, linking our
current findings to the opportunities that lie ahead.

15



2 Motivation and Background
The primary body of literature that we draw from is neural model interpretation. This
is supplemented by a number of other domains where we apply the neural pathways
approach including discourse parsing, textual entailment, transactivity, automatic essay
feedback, which are described in Chapter 6. Our work on interpretation expands on
this prior work while simplifying some procedures and introducing some of our own.
Our goal is to address all three questions with an integrative approach, making use of
multiple lenses and then integrating the disparate pictures each provides into a unified
vision of network function.

In this chapter we examine the literature in neural model interpretation and causal
modelling in neural networks that were foundational to this work and provide context
and justification for decisions that are have been made. It is important to note that the
field of interpretability has changed and evolved concurrently to the work performed for
this thesis, and the ways with which these more recent works integrate with the neural
pathways approach are discussed in Section 11.1. Each of the following sections of
this chapter will cover what has been done in the field, where the gaps are that require
further work, and how my work addresses a subset of that work.

2.1 Taxonomy of Neural Network Interpretability
This section delineates a taxonomy of the prevailing methodologies and techniques in
neural network interpretability, drawing from seminal literature in the field. With the
rapid expansion of interest and effort in the field of neural network explainability, it
is impossible to enumerate or touch on every approach or paradigm that is used, but
in an effort to situate this work within the broader research discourse, we present the
top-level divisions that we have found to be present in the literature as well as some
notable examples from each of those classifications.

Two salient demarcations in the interpretability literature are the distinction between
intrinsic and post-hoc interpretability methods and the distinction between high and
low abstraction interpretability methods. Intrinsic interpretability methods, as discussed
by Räuker et al. (2023), focus on elucidating the internal mechanisms and represen-
tations by creating deep neural networks (DNNs) that are inherently interpretable.
Conversely, post-hoc interpretability methods, as described by Madsen et al. (2022),
furnish explanations subsequent to a model’s training phase, operating predominantly
in a model-agnostic manner. Moving into the dimension of abstraction, we observe
that both intrinsic and post-hoc methods can employ high or low abstraction in their
explanations. High-abstraction methods provide explanations using more abstract,
human-comprehensible concepts, often articulated in sentences. These methods are
tailored for easy human comprehension and often treat the neural network as a black box.
On the other hand, low-abstraction methods encapsulate the model’s specific behavior
given an input, focusing on sub-networks or individual neurons.

Examples of intrinsic interpretability methods include continual learning meth-
ods (De-Arteaga et al., 2019; Smith et al., 2023; Ahn et al., 2019; Aljundi et al., 2019;
Kirkpatrick et al., 2017; Li and Hoiem, 2017; Titsias et al., 2019; Zenke et al., 2017;
Lee et al., 2019; Rusu et al., 2016; Yoon et al., 2018) where models are trained to

16



prevent catastrophic forgetting by maintaining salient weights; sparse networks (Moran
et al., 2021; Wong et al., 2021; Lage and Doshi-Velez, 2017; Meister et al., 2021; Wang
et al., 2020; Yeom et al., 2021) where models are trained to have sparsely activating
neurons that are more likely to represent a human understandable concept; modular
networks (Amer and Maul, 2019; Agarwala et al., 2021; Mittal et al., 2022) where
networks are designed such that concepts will be learned by specific sub-networks;
self-explaining models (Akata et al., 2018; Hendricks et al., 2016, 2018; Kim et al.,
2018b; Patro et al., 2020; Camburu et al., 2018; Kumar and Talukdar, 2020; Lamm et al.,
2021; Zhao and Vydiswaran, 2021) where models are trained to produce explanations
in natural language; adversarial methods (Engstrom et al., 1906; Salman et al., 2020;
Casper et al., 2022a,c; Santurkar et al., 2019) where models that are trained adversarial
have been shown to yield more interpretable features in some cases; and disentanglement
methods (Whitney, 2016; Siddharth et al., 2017; Esmaeili et al., 2018; Chen et al., 2020;
Koh et al., 2020; Losch et al., 2019, 2021; Subramanian et al., 2018) where model
representations are trained to align with interpretable concepts. Conversely, post-hoc
interpretability methods pertain to methodologies that furnish explanations subsequent
to a model’s training phase. As these techniques operate with a fixed pre-trained model,
they are predominantly model-agnostic and are designed to be retroactively applicable,
offering an analysis of the model’s decision-making processes (Madsen et al., 2022). In
the remainder of this section we subdivide the space of post-hoc interpretability methods
further.

Further granularity in the interpretability discourse can be achieved by categorizing
the explanations into high-abstraction or low-abstraction paradigms (Madsen et al.,
2022). High-abstraction methods, provide explanations using abstract concepts, often
articulated in the form of sentences. These explanations are inherently human-grounded,
meaning they are tailored for easy human comprehension. These methods often treat
the neural network as a black-box. While intrinsic model can also have a high or low
levels of abstraction, we focus on the spectrum for post-hoc interpretability methods
as they are more related to our work. Post-hoc models that are also considered high
abstraction include challenge sets and stress tests (Lehmann et al., 1996; Naik et al.,
2018a) where alternative evaluation data that has been constructed specifically to verify
the capabilities of the model to perform a task in a specific way is used, and other
dataset-based methods (Zhou et al., 2014; Bau et al., 2020; Mu and Andreas, 2020;
Hernandez et al., 2021; Oikarinen and Weng, 2022). Conversely, low-abstraction
methods, which comprise sub-network methods for interpretability and individual
neuron level interpretability encapsulate the model’s specific behavior given an input.

Early of these attempts to understand the internal, low-abstraction functions of
trained neural models limited themselves to investigations of the function of individual
neurons or individual architectural components. An early way to probe the function
of target components, as Karpathy et al. (2015) and Strobelt et al. (2016) have each
proposed, is by visualizing patterns of activation through the target components, for
example using heatmaps. There have also been approaches that made use of simpler
classifiers to predict and then explain mistakes made by more complex models (Ribeiro
et al., 2016; Krishnan and Wu, 2017). In a similar vein, linear classifier probes (Shi
et al., 2016a; Adi et al., 2016; Conneau et al., 2018; Zhu et al., 2018; Kuncoro et al.,
2018; Khandelwal et al., 2018; Gupta et al., 2015; Köhn, 2015; Lepori and McCoy,
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2020; Li et al., 2022; Lindström et al., 2021; Miaschi et al., 2021; Niven and Kao, 2019;
Perone et al., 2018; Saleh et al., 2020; Tamkin et al., 2020) have been used to co-train
simple linear models to illustrate functions performed by particular layers in arbitrarily
deep models, and then later by associating the learned patterns in the linear models with
task or linguistic knowledge determined by hand or through some other means to be
relevant or not instance-by-instance.

Additionally to these individual neuron focused methods, there has also been work in
more broadly aligning representations in neural networks with understandable concepts.
Concept vectors (Fong and Vedaldi, 2018; Kim et al., 2018a; Lucieri et al., 2020a,b; Reif
et al., 2019; Zhou et al., 2018a; Abid et al., 2022; Yuksekgonul et al., 2022) are one such
family of methods where the latent space of a neural network is treated as a landscape of
meaningful concepts. Another family of methods use gradients to attempt to synthesize
features that are represented by the latent space of the neural network (Mahendran and
Vedaldi, 2015; Nguyen et al., 2016b; Olah et al., 2017; Casper et al., 2022a,c; Nguyen
et al., 2016a, 2017). A closely related family of methods projects gradients onto inputs
or neurons to identify which neurons or inputs contribute the most to a specific output,
this family is aptly known as gradient-based methods (Adebayo et al., 2018, 2020;
Ancona et al., 2019; Denain and Steinhardt, 2022; Dombrowski et al., 2019; Fokkema
et al., 2022; Jeyakumar et al., 2020; Nielsen et al., 2022; Slack et al., 2020; Zhang et al.,
2019; Ancona et al., 2018; Durrani et al., 2020; Lundstrom et al., 2022).

There are also two post-hoc methods that are roughly analogous to two intrinsic
methods: sparse networks and module networks. Like sparse-network methods, weight-
masking methods (Csordás et al., 2020; Wortsman et al., 2020; Zhao et al., 2020)
leverage the concept that neural networks are often highly over-parameterized and
only have a limited amount of important weights and neurons. However, because
the models are not necessarily designed to be sparse, these methods can encounter
issues with pruned models (Blalock et al., 2020; Frankle and Carbin, 2018; Vadera and
Ameen, 2022). Analogous to module networks, partitioning methods (Watanabe et al.,
2018, 2019; Liu and Arik, 2020; Casper et al., 2022b; Lange et al., 2022; Watanabe,
2019) attempt to cluster groups of related neurons together, but without any run-time
analysis. Similar to partitioning methods, though leveraging run-time analysis to
provide a more functional analysis of the activations of the models, there are neural
circuit methods (Santurkar et al., 2021; Townsend et al., 2020; Zhang et al., 2018,
2020b). It is of note that Räuker et al. (2023) considered the original formulation of the
neural pathways approach from Fiacco et al. (2019a) a member of the neural circuit
family of methods. While this is a reasonable cataloging of the original approach, in
Section 2.4, we explain how work in this thesis has drawn from various families of
neural interpretation techniques to fit a new complementary niche.

2.2 Identifying Gaps in the Literature
Upon beginning the work in this thesis, we identified three primary gaps in the existing
neural network interpretation literature that have substantial room for development:

• Historical approaches focus on understanding the roles of individual neurons in
the greater neural network. It is our view that studying the interpretability of a
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neural network at the individual neuron level can too easily lose the forest for the
trees (see Section 2.4.3). A single neuron can simultaneously be too small of a
unit to see a pattern and an entity that can affect too many different connected
aspects of the network to fully see the breadth of its influence.

• Prior approaches focus on a single neural network at a time. In our view, an
important utility of neural network interpretation is for choosing the correct
model for a given task. By focusing interpretation on a single network at a time,
it can be more difficult to see similarities between superficially different models
(e.g. several different model architectures) or differences in superficially similar
models (e.g. an identical model trained on different data).

• Current approaches do not take into account that any single interpretation tech-
nique will not tell one everything they want to know about a model. Each
interpretation technique is a lens through which a piece of the whole picture can
be seen. It is our view that there should be more focus on designing interpreta-
tion techniques that expect to be used concurrently with other complementary
approaches.

Recent surveys of neural interpretation techniques have identified similar gaps (Saj-
jad et al., 2022) with the addition of three more limitations that are relevant to this
thesis:

• Many approaches rely on human-defined concepts to analyze models, which can
result in incorrect or incomplete analysis.

• The causal relation between neurons and a model’s prediction is not fully under-
stood.

• There is a lack of standard evaluation benchmarks, making it difficult to compare
studies.

Throughout this thesis we primarily focus on addressing the first of our identified
gaps; we propose a more abstract method for model interpretation that looks at functional
group of neurons as the unit of analysis as opposed to individual neurons. While recently
there has been considerable effort put into the field of neural network interpretability,
such that these gaps are beginning to be filled, our method settles into a niche that
connects an open questions in neural interpretation. How to align sub-networks of a
neural network to understandable feature in a manner that is functionally grounded?
We then explore this approach through a combination experiments on both simulated
and real world data. Through correlation with the functional groups of neurons, we can
furthermore reason about the role that those linguistic and task-level features have in
the network’s predictions.

Despite the primary focus being on the abstraction of neural interpretation, we are
still mindful of the other two of our identified gaps to allow for a natural growth in
those directions for future work. Specifically we demonstrate a method for using our
interpretation approach to abstract even further from the core functional neuron groups
to inter-model groups of related neuron groups. This allows if the identification of
similar structures in different models even if the architectures are different.
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We also generally keep in mind the idea that this interpretation approach is only
one of many approaches that may be used to study the knowledge learned by a model.
With this in mind we carve out its niche as a high level interpretation approach that
can provide a good general understanding of what a model has learned and uses for
its task as quickly as possible. Methods of interpretability should not be considered to
supersede or to compete with other each other for supremacy of the field in the same
way that some models can be objectively “better” than other at solving a task. Rather,
we should see each interpretation method as one of many tools and instruments that
each can answer a specific question or set of questions about a model. Only by using
multiple approaches is it reasonable to claim understanding of a model.

2.3 Motivating Questions in Model Interpretation
In Fiacco et al. (2019b), we identified a need for three motivating questions that are
central to the successful interpretation of a neural model:

• Which upstream inputs influence a neuron’s activation level, and conversely, how
do its activation levels affect downstream task performance?

• To what degree is activation related to input at a single time step as opposed to
being context-sensitive (i.e., demonstrating influence from multiple time steps)?
This is challenging to determine within recurrent neural models as there is a large
amount of interdependence between neurons both within and across timesteps.

• Which neurons carry the most statistical influence over the final classification? A
principal challenge of neural network interpretation is that there are too many neu-
rons to attempt understanding what each contributes to the big picture. Narrowing
to those that are most important would make interpretation more tractable.

2.4 Specifying the Niche along Axes of Interpretability Methods
This section situate the work in this thesis among related works along five axes: neural
network explanation types, post-hoc versus intrinsic methods, level of abstraction,
causality, and the measurement of interpretability.

2.4.1 Explanations in Neural Interpretation

The deceptively simple question What is an explanation? is still largely an open
question in neural network interpretation, but necessary for the systematic evaluation of
interpretation techniques (Wiegreffe and Marasović, 2021). We use the definition from
Wiegreffe and Marasović (2021) that defines an explanation as a process of providing
justification for or an understanding of the decision-making process of a neural network
model. An explanation can be in the form of highlights, which are subsets of the input
elements that explain a prediction; free-text explanations, which are free-form textual
justifications that are not constrained to the input instance, or structured explanations,
which are explanations that are not entirely free-form but are still written in natural
language with constraints placed on the explanation-writing process.
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For purposes of this thesis, we constrain out explanations to those defined as high-
lights, though we do so indirectly. Our method makes heavy use of factor analysis (Tip-
ping and Bishop, 1999) which can be understood as carving out a subset of neurons that
are deemed important for the predictions. The activations of the neurons are directly a
result of inputs to the model and thus the method is, in effect, searching for highlights
within the model that explain the predictions.

While our method is most reasonably classified as using highlights as explanation,
a challenge arises in selecting datasets from prior work in this form of explanation.
Specifically, many datasets that focus on highlights, require aligning decisions of a
model to specific text in an input (Kwiatkowski et al., 2019; Chalkidis et al., 2021;
Khashabi et al., 2018; Socher et al., 2013; Pang and Lee, 2005; Carton et al., 2020).

Furthermore, Madsen et al. (2022) posits a distinction between local explanations
and global explanations as it applies to neural network interpretability methods. The
former focuses on explaining why a model made a specific decision for a specific
observation; the latter focuses on explaining the model as a whole. In this work, we take
a global perspective towards our explanations, that is, we aim to explain the functions
that the model has learned and applies to all inputs. The combination of the results of
those functions manifests as the behavior of the network.

2.4.2 Post-hoc Interpretability Methods

As described in Section 2.1, the literature categorizes interpretability methods into
intrinsic and post-hoc approaches. Intrinsic methods focus on models that are nat-
urally interpretable, sometimes termed ”white-box” models, though their claims of
interpretability often require validation, as exemplified by debates over the attention
mechanisms which were originally thought to be intrinsically interpretable (Bahdanau
et al., 2014), but were later found out to be rather inconsistent (Jain and Wallace, 2019;
Wiegreffe and Pinter, 2019; Serrano and Smith, 2019; Vashishth et al., 2019). On
the other hand, post-hoc methods emphasize explaining models after training. While
intrinsic methods are more specific in their application, post-hoc methods offer broader
adaptability, contingent upon their accuracy. Both methods have unique contributions to
model accountability, and their intersection can provide mutual validation.

Intrinsic methods are built into the model design and can thus be constrained by
their inherent architecture. Post-hoc methods, on the other hand, allow for a more
flexible analysis of any given model after its training. This flexibility facilitates broader
applicability across various model types and domains, and was the driving reason for
this work to focus on this type of method. There are potentials for complementary work
on both intrinsic methods and post-hoc methods along with their interactions, but to
limit the scope of this work, we focus only on the latter.

2.4.3 Abstraction

We also described in Section 2.1 an axis of distinction around interpretability models
based on their level of abstraction. Low-abstraction methods, such as input features
explanations or neurons, zoom into the specifics, often spotlighting individual input
tokens or neural activations to indicate their contribution to a given prediction. While this
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granularity affords detailed insights, it can remain limited in its ability to convey broader
concepts that are human understandable (Madsen et al., 2022). On the other hand,
high-abstraction techniques, exemplified by natural language explanations, operate at a
more elevated level, providing overarching narratives that can encompass more abstract
concepts in their elucidation. While the high-abstraction methods are typically more
human-friendly and accessible, they might not always capture the nuanced behavior of a
model as faithfully as their low-abstraction counterparts. Thus, choosing the right level
of abstraction in interpretability is a delicate balance and is contingent upon the context
and the intended recipients of the explanation.

The method presented in this thesis is primarily a low-abstraction method. We
focus on identifying specific patterns of activation in the neural network to attribute
meaning to. However, we take inspiration from more abstract methods to overcome
some shortcomings of purely low-abstraction methods, especially those found in neuron-
specific methods (Räuker et al., 2023). Specifically, the problems of polysemantic
neurons, that are neurons which play multiple roles within the network, and frivolous
neurons, that are neurons that do not play any meaningful role within the neural network,
are directly addressed by our method as will be explained in detail throughout the
remainder of the thesis.

2.4.4 Causal Modeling in Neural Networks

There has been increased interest in the literature for causal representations of neural
models. Bengio et al. (2019) present a method for using a transfer objective to determine
if there is a relatively sparse portion of the model that is resistant to change from the
pretraining task to the post training task. Such sparsity could indicate learned causal
relationships within the model. Elazar et al. (2021) propose an alternative method to
traditional neural probes, called Amnesic Probing, which focuses on the influence of a
causal intervention that removes information from the representation in order to assess
the utility of a property for a given task. Furthermore, thee found that conventional
probing performance is not correlated with task importance, leading them to call for
increased scrutiny of claims that draw behavioral or causal conclusions from probing
results.

There have also been an increase in perturbation and ablation based models (Hod
et al., 2021; Zhou et al., 2018b; Morcos et al., 2018; Ravfogel et al., 2022) where parts
of a model are modified to observe the effects. These counterfactual experiments allow
researchers to observe causal effects within a neural network. On such example is in the
analysis in Bengio et al. (2019) where they use changes of neurons in the network to
determine if these causal relationships exist.

In this work, while strictly correlational in nature, we align neural models with
arbitrary Bayesian networks to answer the question of to what extent does the processes
of the neural network resemble the causal processes defined by the Bayesian model. As
such, while it is not a causal method, it does make strides bridging the theoretical divide
between correlational interpretability techniques and causal interpretability techniques
by allowing researchers to ask questions about how well does their understanding of
how a model works, reflect that actual behavior of the model.
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2.4.5 Measurement of Interpretability

The measurement of interpretability in machine learning is a nuanced domain with
little consensus on how best to measure it (Madsen et al., 2022). However, methods
for evaluating such methods can be broadly categorized into three types (Doshi-Velez
and Kim, 2017; Madsen et al., 2022) human-grounded, application-grounded, and
functionally-grounded interpretability. Human-grounded interpretability is concerned
with the resonance of explanations with human understanding, focusing on their imme-
diate comprehensibility rather than their real-world applicability. On the other hand,
application-grounded interpretability anchors its assessments in real-world scenarios,
probing whether model explanations lead to tangible benefits in specific contexts, often
contrasting machine-generated insights against those offered by humans. Though in
machine learning research, this type of measurement is not often done in NLP research
because it is highly application specific and incurs a significant cost (Madsen et al.,
2022). Lastly, functionally-grounded interpretability, rather than gravitating towards
human comprehension or real-world utility, centers on the fidelity of explanations to the
models they represent, ensuring that the insights provided truthfully mirror the underly-
ing model behaviors. Collectively, these categories furnish a multifaceted framework
to rigorously assess the clarity, utility, and accuracy of model explanations in varied
contexts.

While the resonance of explanations with human understanding and their real-world
applicability are undeniably significant, a critical foundational aspect is to ensure that
these explanations authentically encapsulate the intrinsic workings of the model. Absent
this functional grounding, even the most lucid or pragmatically beneficial insights are
susceptible to misconceptions or outright inaccuracies. Consider the propensity to
anthropomorphise the behavior (Li and Suh, 2021) of machine learning models or selec-
tivity bias in human raters (Miller, 2019). Functionally-grounded interpretability acts as
a bulwark against these potential inaccuracies, serving as a cornerstone for the reliability
of model explanations. For the purposes of this work, it is this form of grounding we use
to ensure that the methods presented are not just readily comprehensible or opportune
but are fundamentally reflective of the model’s processes. Given the escalating reliance
on machine learning models in both academic and practical spheres, maintaining the
veracity of these explanations is imperative.
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3 Neural Pathways as Functional Components
Interpretation of neural models is a difficult task because the knowledge learned within
neural networks is distributed across hundreds of thousands of parameters. Interpreting
the significance of any individual neuron is tantamount to reconstructing a forest based
on a single pine needle. More specifically, the contribution of each individual neuron is
a minuscule part in the overall representation of the learned solution, and the mapping
between neurons and function may be many-to-many (Goodfellow et al., 2016). In this
chapter we present the core contribution to this thesis which is the method of network
interpretation that enables a more abstract view of what a network has learned which
we refer to as neural pathways (Fiacco et al., 2019a). In this approach, inspired by
the concept of biological neural pathways used in neuroscience research to understand
physical brain function (Kennedy et al., 1975), a network is factored into functional
groups of co-firing neurons that cut across layers in a complex network architecture.
Rather than attempt interpretation of the activation pattern through a single neuron
at a time, we instead attempt interpretation of a functional group of neurons where
the activation pattern of the group, we argue, may be more effectively associated with
human level task and linguistic knowledge. This enables understanding the neuron
groups as working together to accomplish a comprehensible sub-task. These pathways
help conceptualize what task and linguistic knowledge a model may be using in an
approximate way, the benefit of which is that it does not depend on an isomorphism
between network architectures. This chapter focuses on presenting the neural pathways
technique while later chapters will expand on the theory and limitations of the method.

This method, which can be applied simply in a purely post-hoc analysis, indepen-
dent of the training process, can enable both understanding of individual models and
comparison across models. The interpretation process enables investigation of which
identified functional groups correspond to linguistic or task level heuristics that may be
employed in well understood non-neural methods for performing the task. Furthermore,
it enables comparison across very different architectures in terms of the extent and the
manner in which each architecture has approximated use of such knowledge. In so doing,
the method can also be used to formulate explanations for differences in performance
between models based on relevant linguistic or task knowledge that is identified as
learned or not learned by the models. This approach builds on and extends prior work
using linguistic and task knowledge to understand the behavior and the results of modern
neural models (Shi et al., 2016b; Adi et al., 2016; Conneau et al., 2018).

In the remainder of this chapter we provide a detailed explanation of the neural
pathways approach and apply it to previously published neural models, namely models
for the task of named entity recognition (NER) (Ma and Hovy, 2016) on CoNLL 2003
data for English (Sang and Meulder, 2003) and recognizing textual entailment (Dagan
and Glickman, 2004). We compare across different neural architectures through a shared
lens comprising linguistic and task-level heuristics for the two target tasks and draw
conclusions about learning outcomes on those tasks.
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Figure 1: Flowchart representation of neural pathway based model interpretation.

3.1 Neural Pathways
Many previous approaches have analyzed individual neurons or architectures of specific
neural networks with gradient methods (Karpathy et al., 2015; Bach et al., 2015; Arras
et al., 2017). However, we propose an approach that enables abstraction above the
surface structure of a network architecture, enabling a relaxation of the assumption of an
direct link between structure and function. To accomplish this abstraction, we employ a
simple approach to identify what we conceptualize as emergent neural pathways, which
are specific sets of co-firing neurons that work together as the model makes predictions
on the data. To understand the specifics of the function performed by the functional
group, we align activation patterns through the group per instance with patterns of
relevance for task and linguistic knowledge.

3.1.1 Prerequisites

As this is an interpretation method, there is an assumed set of information about the
model, the dataset, and the task that must be known in order to apply the techniques
effectively. Namely, there should be a reference set of heuristic knowledge, either at
the linguistic or task level, that is associated with the dataset on an instance-by-instance
level for at least some subset of the data.
Metrics of Interest: As our approach can be generalized across many tasks, the metrics
that will be used to identify the salient pathways must be defined before the interpretation
process. Section 3.2.1 and 3.2.2 provide specific examples of these metrics as applied to
the entailment and NER models. Metrics are chosen to be able to be easily computed and
will provide the target values for the statistical analysis outlined in Section 3.1.3, Linear
Comparisons. Example metrics include disagreement between models, incorrectly
predicted values, or other task specific metrics.
Model and Data: The neural pathways method is a post-training analytic approach,
and thus it requires the existence of pretrained models, that will be the target of the
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interpretation process. This stands in contrast to previous co-training approaches, where
the mechanism for interpretation is trained simultaneously with the networks that are of
interest.
Task Knowledge: This interpretation method is built on the assumption that the re-
searcher has external knowledge of the task that their model is being applied to. This can
be as straightforward as simply having a feature engineered baseline, as with our named
entity recognition example (Section 3.2.2). However, it can also be as nuanced as having
access to an analysis of the types of required knowledge to accurately predict certain
instances in the data, as in our recognizing textual entailment example where we use
an alternate validation set for the MultiNLI corpus where subsets have been earmarked
as of interest for specific kinds of task and linguistic knowledge (Section 3.2.1). The
external knowledge that is brought to the interpretation process will directly affect what
conclusions can be drawn from the neural model as this method does not generate new
knowledge, but validates the relevance of external knowledge for explaining network
function. If the knowledge brought to the process is only partial, then only partial
understanding of network function will be possible. However, as one iterates through
the interpretation process, the potential relevance of additional knowledge may emerge,
and the process can be repeated with the expanded set. This is an advantage of not
requiring the interpretation mechanism to be trained along side the model in question.
Extracting Activations: As a preparatory step for the interpretation process, an

activation matrix is constructed where the columns represent individual neurons, the
rows represent instances, and the value of each cell is the activation of the associated
neuron in the associated instance. Part of this method’s flexibility is that the set of
probed neurons can be arbitrarily large or small. This way, the sets can be specified to
analyze the pathways within certain subsections of the model or in the model as a whole.
This flexibility allows researchers to ignore parts of the model that may already be well
explained by other neural interpretation techniques (e.g. low-level feature extraction in
convolutional neural networks in image recognition, or attention heatmaps).

3.1.2 Identifying Pathways

Neural pathways are a distinct (though related) phenomenon from interconnectivity of
a given network based on individual connection weights. While the weights describe
the strength of connectivity between individual pairs of neurons, co-activation is an
emergent property that arises through sets of connected neurons, and because of this,
pathways can not be constructed through a simple graph partitioning of the network
structure based on weights apart from the observation of the network in use.

For our analysis, we selected the number of pathways for each model so that they
explain ≈ 75% of the total variance in the model. This number was chosen arbitrarily as
a balance between the total variance explained by the dimensionality reduction and the
quantity of pathways required. Further experimentation may reveal an optimal balance.
Dimensionality Reduction: A dimensionality reduction is applied to the activation
matrix to get a set of factors that will correspond to our neural pathways. While in
principle, any form of dimensionality reduction can be used, Principal Component
Analysis (PCA) (Hotelling, 1933) is used in this work for the dimensionality reduction
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for its simplicity and transparency. Different methods for dimensionality reduction may
prove better or worse for interpreting certain models for certain tasks, but the question
of which specific dimensionality reduction technique works best is beyond the scope of
this work.
Finding Active Pathways: For each data instance in the validation set, the pathways
that are activated to produce the model predictions are identified. This is done by
constructing an activation matrix, as explained above (Section 3.1.1), and applying PCA
to it in order to define functional groups of neurons based on their coordinated behavior.
The factors identified become the neural pathways and the factor loadings (DeCoster,
1998) become a means for understanding the activity of the pathways. These factor
loadings are later used along with the weights learned by linear probes to align the
extracted pathways with interpretable task information.

3.1.3 Evaluating Pathway Effects

With an approach similar to Radford et al. (2017), where it was found in a specific case
that sentiment-related activations were encoded within single neurons, we abstract the
concept of single neuron prediction up a level to examine single pathway prediction.
Rather than operating at the level of a single neuron, where neurons typically play a
minuscule part in many different functions, we operate at the level of a pathway, where a
pathway represents neurons that demonstrate their relatedness through their coordinated
behavior.
Linear Comparisons: This refers to the correlation between the activities associated
with each pathway per instance to the pattern of relevance per instance of each metric of
interest (e.g. each piece of linguistic or task knowledge). This yields a set of correlation
coefficients which represent the importance of each PCA dimension (pathway) for
explaining the use of each of the metrics of interest by the learned network.

3.1.4 Associating Task Knowledge with Pathways

Neural pathways are a way to abstract the problem of interpreting single neurons in a
neural model to interpreting the functional groups of neurons. In isolation, the pathways
are not meaningful, though grounded to task-related information via linear probes and
rank correlation, the learned representations within the neural model can be evaluated.
Linear Probes: Like Conneau et al. (2018), a series of logistic regression models are
trained to map a neural representation to a given linguistic phenomenon, though all of
the neurons from parts of the network that are to be analyzed are included whether or
not they come from the same layer. Logistic regression probes were used as opposed to
the MLP probes in Conneau et al. (2018) to avoid the problem of attempting to interpret
a model with another model that is comparably difficult to interpret. Additionally,
concepts beyond surface features may also be used as the targets for the probes. This
is demonstrated in Section 3.2.1, where we explore the types of knowledge required
to solve a task rather than the surface features of the input. From each of the linear
models, we store the weight vector, which represents the importance of each neuron
for predicting the types of task-specific phenomena learned by the linear model and the
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performance of the linear model which indicates the degree to which that information is
embedded in the neural model.
Rank Correlation: Using both the factor loadings of the neurons from Section 3.1.2
and the weights from the linear probes discussed above, we can connect the pathways to
known task information. Intuitively, if a neural pathway was approximating a function
similar to one of the phenomena examined by the linear probes, then the loadings of each
neuron in the pathway would be similar in relative shape to the weights of the relevant
linear probe. That is, if the pathway and the probe are viewing the same phenomenon,
the neurons with stronger weights in the probe should have higher loadings in the
pathway and vice versa. To measure the relatedness of each pathway’s loadings to each
linear model’s weights, we use Spearman’s rank correlation coefficient (ρ) (Spearman,
1904), which assesses the monotonicity of two data sets giving a numerical comparison
of the relative shapes of the weights and loadings.
Simplification: The original pathways approach (Fiacco et al., 2019a) used the above
rank correlation between the weights of the knowledge probes and the loadings on the
PCA to determine how closely aligned a type of external knowledge was to a pathway.
However, this is approach does not make use of the result of the dimensionality reduction.
Given the output of the PCA represents how strongly each factor is realized in a given
data instance, this could be improved.

We use these values as the surrogate activations of the pathways rather than using
the activations of the individual neurons for all of the linear probes. The weights of
the probes then directly relate the pathways to to external knowledge. This further
reinforces the idea of abstracting away from the individual neuron level to the pathway
level while reducing the amount of effort aligning the pathways with external knowledge.
We replace the validation step with an additional linear probe, a binary classification
predicting the metric given the pathway activations. This also enables us to compare
models with the meta-pathways approach detailed later in this chapter.

The rank correlation may still provide insight on how well the structure of that
pathways matches a classifier that is directly trained on a given phenomena.

3.1.5 Interpretation

The above methods provide the foundation for a quantitatively backed interpretation of
a neural model. With this foundation, inferences can be made about the model with a
statistical indicator of the confidence or utility of the pathways.
Function Inference: From pathways that have high rank correlation with the linear
probes, it can be inferred that the model contains a set of neurons in those pathways
that perform the tasks provided to the probe. It is also known what metrics of interest
that pathway has influence over from the linear comparisons. It is then possible to
extrapolate whether the model has learned to use the knowledge examined by the probes
in such a way that it can influence those metrics. This directly provides an insight into
what knowledge the model has learned and in what cases it has learned to apply it.
Confidence: The confidence of the claim that the model has learned such information
can be assessed by using the rank correlation coefficient and the performance metrics of
the linear probe and the linear comparisons. The rank correlation coefficient measures
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Figure 2: Decomposable Attention Model. Dotted arrows indicate networks with shared
weights.

how well the knowledge stored within the network aligns with the function that the
pathway is performing. The linear probe and linear comparison performance are likewise
related to how likely the information is stored within the pathway and how influential
that pathway is on the metric respectively.

3.2 Interpreting Neural Models for NLP Tasks
To evaluate our interpretation technique on real world data, we applied our method on
four trained models over two tasks: recognizing textual entailment using the Multi-genre
Natural Language Inference corpus (Williams et al., 2018) and named entity recognition
using the CoNLL 2003 data (Sang and Meulder, 2003) for English NER. The analysis
was implemented using Scikit-Learn (Pedregosa et al., 2011) and SciPy (Jones et al.,
2001–) and unless otherwise noted used default hyperparameters.

3.2.1 Recognizing Textual Entailment

Recognizing textual entailment is a task comprised of deciding whether the concepts
presented in one text can be determined to be true given some context or premise
in a different text (Dagan and Glickman, 2004). The Multi-genre Natural Language
Inference (MultiNLI) corpus (Williams et al., 2018) follows this definition and contains
annotated pairs of sentences which are labeled as entailment if the hypothesis sentence
is definitely true given the premise sentence, contradiction if the hypothesis is definitely
false given the premise, and neutral if the hypothesis could be true, but is not guaranteed
to be given the premise.
Models and Data: We implemented two neural models for this task: a bidirectional
version of the simple LSTM classifier from Bowman et al. (2015) and the decomposable
attention model (DAM) (Figure 2) from Parikh et al. (2016a). We use Keras (Chollet
et al., 2015) with the TensorFlow (Abadi et al., 2015) backend for our implementations
of both of the entailment models.
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Metrics of Interest: For purposes of this chapter, the metric of interest used is simply
the class value for each data instance. For this task, the activations in the representations
for each text segment learned by the model just prior to the classification step are used
in the analysis.
Task Knowledge: Our external knowledge for this task comes from a stress test dataset
developed for models trained on the MultiNLI corpus (Naik et al., 2018b). There are
nine categories and subcategories, each of which contains data instances that require a
specific type or reasoning to correctly identify the entailment relationship. We combine
all of the data instances in the stress test and tag each with the category or subcategory
it belongs to. The entailment models’ representations are analyzed in terms of the
type of reasoning they can perform. While we acknowledge that recent work by Liu
et al. (2019a) has found limitations in this dataset with respect to the reasoning that is
required for the models to achieve, we use it as a foundation for interpretation that can
be expanded as new resources become available.
Identifying Pathways: For the entailment models, the total variance explained for the
decomposable attention model was 76.9% over 15 pathways and for the BiLSTM en-
coder model variance explained was 76.5% over 175 pathways. This result clearly shows
that the representation learned by the decomposable attention model has significantly
more internal coherence as compared to the BiLSTM encoder.
Evaluating Pathway Effects: From the linear comparisons for the decomposable
attention model, three pathways had a correlation coefficient greater than 0.25 (p <
0.001). However, in the LSTM model, there were 14 pathways that correlated with the
model prediction, but none of them individually had a correlation coefficient greater
than 0.2 (p < 0.05). Higher coefficient indicate the pathways that have stronger effect
on the model prediction. It also indicates that individual pathways in the decomposable
attention model are more informative for understanding why the model makes certain
predictions than the LSTM model.
Associating Pathways With Task Knowledge: The results from the linear probes are
presented in Table 2 with the F1 score of each probe on the given piece of external task
information. For the entailment task, 55% of the instance types can be predicted with
high precision and recall for the decomposable attention model, though only 44% with
the BiLSTM encoder. There are two stand-out instance types that have major differences
between models: Antonyms and Swapped Content Words. Both of these are related to
word meanings indicating that the decomposable attention model may be storing more
information about meaning than the BiLSTM encoder.

Presented in Table 3 are the results for correlating the neural pathways with the
information extracted via the linear probes. The pathway numbers are ordered by
variance explained, with lower pathway indexes indicating that the pathway explains
more variance in the activations. For the entailment task, the largest difference between
the models is that the decomposable attention model has pathways which are correlated
well with antonyms and numeric types of data instances even where the antonym
pathway represents a relatively small amount of the model variance. Contrasted to this,
the BiLSTM encoder model has the best correlations with data instances that display
large length differences between the hypothesis and premise sentences. Despite having
well over 100 different pathways to explain the variance in the model, the pathways that
correlate well with high level instance types also explain more variance on average.
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Figure 3: End-to-end model architecture for neural SOTA described in Ma and Hovy
(2016). The character representation is computed by a CNN over the characters of the
word. This is concatenated with the word embedding (initialized with GloVe) and fed
into a BiLSTM. A CRF layer does a sequential decoding to predict the NER tags using
the BiLSTM hidden layer vector.

Interpretation of Models: For the entailment models, the experiment was designed to
explore the predictive behavior of each model for the task. The linear probes indicate
that the information about what type of reasoning is required for a task, which is
hypothesized to be encoded in the models, was distinctly encoded in each model, but
to a greater extent in the decomposable attention model. The connection between the
pathways and the linear probes was less strong, however. This indicates that despite
the models having an encoding of the knowledge observed by the probe, it is likely
a byproduct of a different function that is being approximated by the neural network.
The pathways were created by analyzing which neurons behave cohesively, indicating a
subprocess within the network. However, these subprocesses do not correspond strongly
to any of the tested features. Consequences of this finding could be an indication that
the model is ‘cheating’ on the task and has some inductive bias that is beneficial to
the task independent from the task as envisioned by the creators. Otherwise, if many
models demonstrate this behavior, the task or dataset may be insufficient to induce the
desired learning behavior in neural models. This is consistent with recent highly domain
specific analyses of this task (Gururangan et al., 2018; Glockner et al., 2018; Poliak
et al., 2018).

3.2.2 Named Entity Recognition

Given an input sequence, the NER task involves predicting a tag for each token in the
sequence that denotes whether the token is an entity or not, as well as what type of
entity it is. An example of such a tag might be PER for a “person” entity or ORG for an
“organization” entity.
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Models and Data: We implemented two neural models for our experiments: the first
(Figure 3) is a well performing neural model that uses a CNN over characters, word
embeddings, a Bidirectional LSTM, and a CRF layer for decoding (Ma and Hovy,
2016). Our second model has the same architecture as above only with a BiLSTM over
the characters instead of a CNN. The neurons chosen for analysis were the resulting
activations for each character encoding sub-network, the word embeddings, and the
resulting activations from the sentence level BiLSTM. Implementations of each of the
NER models was done using DyNet (Neubig et al., 2017a).

We used the CoNLL 2003 dataset (Sang and Meulder, 2003) for training. For the
analysis we sampled the data to get a dataset with a balanced number of classes. The
sampling procedure is inexpensive and can be repeated to maintain statistical power.
Metrics of Interest: The differences in predictions for the task are used as the metric of
interest. This is a binary value for each data instance where it is 1 if the two models did
not produce the same response and 0 otherwise (correct or not). Neurons from across
layers were used for the NER task analysis.
Task Knowledge: For our external knowledge, we use a set of features inspired by
Tkachenko and Simanovsky (2012) who describe a comprehensive set of traditionally
used and linguistically informed features for the NER task. These can be sorted into
three categories: ‘Local Knowledge Features’ that refer to the features that can be
extracted from a particular word; ‘External Knowledge Features’ are those that use
external information such as part-of-speech tags (extracted using nltk1); and Other
which includes miscellaneous features like End-of-Sentence markers, hyphenated words,
among others.
Identifying Pathways: For the NER models, 74.5% of the variance was explained for
the CNN-BiLSTM-CRF with 40 pathways and 75.1% of the variance was explained by
35 pathways in the BiLSTM-BiLSTM-CRF. This shows a that both models have similar
amounts of observable structure within them.
Evaluating Pathway Effects: Similarly, for the NER task, the differences in predic-
tions for the CNN based character encoder model and the BiLSTM based character
encoder via the linear comparisons, were explained by several pathways. For the CNN-
BiLSTM-CRF, the top 5 predictive pathways for the differences between the two models’
predictions have an average of 0.025 higher correlation coefficient (p < 0.001) than the
BiLSTM-BiLSTM-CRF.
Associating Pathways With Task Knowledge: For the NER task linear probes, 13
out of 50 features are almost perfectly predicted by the activation probes (i.e. greater
than 0.90 F1) and there are no significant differences between higher performing probes
for the BiLSTM-CRF with the CNN character encoder versus the BiLSTM character
encoder. The main difference seen in the results is that the CNN trades off storing
information about plural nouns and adjectives for storing clearer representations for
parentheses and digits.

For the NER analysis, the pathways that correspond with the surface features
represent a very small amount of the variance within the model (with few exceptions).
A notable difference between the two models is that the BiLSTM character encoder
seems to have a considerably more organized pathway corresponding to title case than

1http://www.nltk.org/api/nltk.tag.html
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Task Model Dev F1

ENTAILMENT BILSTM ENCODER 57.4
DECOMPOSABLE ATTENTION 72.8

NER BILSTM-BILSTM-CRF 83.7
CNN-BILSTM-CRF 94.4

Table 1: F1 score for each model on the development set for the entailment task and the
NER task.

the CNN based character encoder.
Interpretation of Models: The NER model analysis was set up to understand the
factors contributing to the differences between the two models rather than the factors
influencing the prediction accuracy. Many of the surface features that were tested were
present in the models, although there were not significant differences as to which of
these features were encoded in one model or the other. Examination of the correlation
of each pathway to the prediction differences between the models indicate that the
differences were primarily explained by pathways that had high amounts of explained
variance. Strong linear probe results, in conjunction with a mismatch between which
pathways correlated to the metric of interest and which pathways correlated well to each
surface feature that was probed, indicate that each of the models learned the surface
features from the data and that other functions are responsible for differences. This can
guide future examination of these models to pinpoint exactly what knowledge the model
is using for the task. For example, a high variance pathway for the CNN-BiLSTM-CRF
included some neurons from the CNN and some from the LSTMs and was typically
activated by words with capital letters. However, it also activated on notable exceptions
such as “van” and “de” that serve as a lowercase part of some names indicated that it had
memorized those exceptions to the broader heuristic. No such pathway was identified in
the BiLSTM-BiLSTM-CRF model.

3.2.3 Results

Table 1 shows the F1 score on the validation set for the models on both tasks. These
models were not tuned to obtain the highest performance possible as they are simply
the subject of the interpretation techniques, but their relative performance on the tasks
provides some context for further analysis.
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Instance Type DAM BiLSTM Difference

ANTONYM 0.93 0.38 0.55
LENGTH.DIFFERENCE 0.98 0.98 0.00
NEGATION 1.00 0.93 0.07
NUMERIC 0.99 0.96 0.03
WORD.OVERLAP 1.00 0.94 0.06
CONTENT.WORD.SWAP 0.69 0.47 0.22
FUNCTION.WORD.SWAP 0.56 0.47 0.09
KEYBOARD.SWAP 0.59 0.50 0.09
SPELLING.SWAP 0.62 0.59 0.03

Feature CNN BiLSTM Difference

WORD.CONTAINSCAPITAL 0.98 0.98 0.01
WORD.HYPEN 0.80 0.83 -0.03
WORD.ISDIGIT 1.00 0.99 0.01
WORD.ISTITLE 1.00 1.00 0.00
WORD.UPPER 0.92 0.93 -0.01
WORD.LOWER 0.73 0.71 0.01
WORD.POSTAG-( 0.94 0.95 -0.00
WORD.POSTAG-) 0.58 0.38 0.20
WORD.POSTAG-, 1.00 1.00 0.00
WORD.POSTAG-. 0.59 0.59 -0.00
WORD.POSTAG-IN 1.00 1.00 0.00
WORD.POSTAG-JJR 1.00 1.00 0.00
WORD.POSTAG-JJS 0.55 0.66 -0.11
WORD.POSTAG-MD 0.90 0.98 -0.08
WORD.POSTAG-NN 0.95 0.95 -0.00
WORD.POSTAG-NNP 0.95 0.95 -0.00
WORD.POSTAG-NNPS 0.11 0.21 -0.10
WORD.POSTAG-NNS 0.24 0.41 -0.17
WORD.POSTAG-PRP 0.44 0.62 -0.18
WORD.POSTAG-VB 0.17 0.21 -0.04
WORD.POSTAG-VBD 0.99 0.98 0.01
WORD.POSTAG-VBG 0.13 0.19 -0.06
WORD.POSTAG-VBN 0.98 0.98 -0.00
WORD.POSTAG-VBP 0.64 0.59 0.05
WORD.POSTAG-VBZ 0.56 0.64 -0.08

Table 2: Linear probe F1 score for the presence of provided external task knowledge
given the neural activations and the difference between the two models. Top: entailment
stress test data instance categories. Bottom: NER surface features. All performance
metrics have p < 0.05.
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Instance Type DAM BiLSTM
Pathway ρ Pathway ρ

ANTONYM 12 0.19 16 0.10
LENGTH.DIFFERENCE 0 0.10 17 0.23
NEGATION 1 0.08 1 0.18
NUMERIC 2 0.29 4 0.13
WORD.OVERLAP 3 0.15 10 0.16
CONTENT.WORD.SWAP 8 0.08 32 0.11
FUNCTION.WORD.SWAP 8 0.11 31 0.11
KEYBOARD.SWAP 4 0.09 31 0.13
SPELLING.SWAP 8 0.10 12 0.09

Feature CNN BiLSTM
Pathway ρ Pathway ρ

WORD.CONTAINSCAPITAL 35 0.11 30 0.11
WORD.HYPEN 38 0.09 26 0.07
WORD.ISDIGIT 18 0.11 6 0.16
WORD.ISTITLE 30 0.14 28 0.23
WORD.UPPER 38 0.12 0 0.14
WORD.LOWER 15 0.05 28 0.05
WORD.POSTAG-( 4 0.12 10 0.07
WORD.POSTAG-) 27 0.09 0 0.08
WORD.POSTAG-, 31 0.15 32 0.18
WORD.POSTAG-. 28 0.09 23 0.06
WORD.POSTAG-IN 27 0.13 22 0.15
WORD.POSTAG-JJR 13 0.11 34 0.18
WORD.POSTAG-JJS 0 0.11 8 0.07
WORD.POSTAG-MD 37 0.11 16 0.08
WORD.POSTAG-NN 0 0.07 22 0.06
WORD.POSTAG-NNP 35 0.10 3 0.09
WORD.POSTAG-NNPS 39 0.13 33 0.08
WORD.POSTAG-NNS 26 0.04 8 0.07
WORD.POSTAG-PRP 18 0.06 8 0.14
WORD.POSTAG-VB 0 0.10 25 0.07
WORD.POSTAG-VBD 25 0.08 34 0.13
WORD.POSTAG-VBG 39 0.06 14 0.04
WORD.POSTAG-VBN 38 0.07 17 0.12
WORD.POSTAG-VBP 17 0.05 24 0.10

Table 3: Most correlated neural pathway along with the rank correlation coefficient for
each model for each task studied. Top: entailment stress test data instance categories.
Bottom: NER surface features. All rank correlations have p < 0.001.
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3.3 On Connectivity within Pathways
Based on the method to compute neural pathways from model activations, more specifi-
cally the dimensionality reduction step, it is reasonable to inquire about the possibility
that neurons that end up with in a neural pathway may not connect directly to other
neurons within the pathway. In our current formalism for the neural pathways approach
we use the term pathway in a specific sense as described above that is no longer directly
tied to the biological inspiration of chains of networks of biological neurons. However,
we must entertain the possibility that there may be disconnected neurons within our
pathways and address the implications should that occur. There are two distinct ways
that neurons within a pathway can be disconnected from the others: the can be neurons
within the same layer or they can be in different layers. Each of these cases has different
considerations that will be discussed in the remainder of this section.

The first case where the neurons are on the same layer is the simpler case and
is largely represents the purpose of the neural pathways approach. In general, all
neurons within a artificial neural network layer are not directly connect to each other to
enforce the assumptions that allow backpropagation and are thus independent from each
other given the input to that layer from an information flow perspective. However, we
may reasonably expect that, in aggregate, the neurons within the layer represent some
intermediate computation for the neural network and the core assumption of the neural
pathways approach is that sets of neurons within these intermediate representations
contain representations of sub-tasks that the model has learned. It is thus expected and
intentional that neurons within a layer are allowed to be within a pathway despite a lack
of a direct connection for information to flow between them.

The other case can be broken further into two sub-cases: first, where the neurons
are from entirely distinct layers (e.g. two different layers within a feed-forward neural
network), and second, where the neurons are from the same layer applied to different
information (e.g. from different time-steps in a recurrent neural network). Each of these
cases are more complex than the previous and will require future work to characterize
the full extent of the implications. It is for this reason that the experiments on each
the NER and Entailment tasks earlier in this chapter chose specific sets of neurons to
examine that avoided these cases.

We expect the first sub-case to be fairly rare, though we will need to more rigorously
define how rare that is. This is because between layers, there are often many if not
exhaustive connections between neurons. This means that a pair of neurons in adjacent
layers cannot be disconnected and for them to be disconnected across more layers,
they both need to be disconnected and no neuron in the layers between them can be in
the pathway as well. It is possible to imagine such functions where the intermediate
representation does not correlate with either input or output, but we expect in general,that
those functions will not be learned regularly in practice. However, future work will need
to verify this assumption.

We expect the second sub-case to be more common. This, like the first case, we
determine to be reasonable behavior depending on the intended analysis goal one has. If
we imagine the case with multiple time steps of a recurrent neural network, it has been
reported that some neurons act like a state machine and represent the change in state
within a model (Giles et al., 1995; Tiňo et al., 1998; Hudson and Manning, 2019). It
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would be expected that these neurons would occur in a pathway with other neurons that
activate in that state. In this way that pathway does not represent the flow of information,
but a group of neurons that have a purpose which is the manner in which we defined
neural pathways. This would be able to be aligned with a certain type of metadata that
might be of a different form than pathways that one would find in a feedforward neural
model. This highlights the importance of knowing what type of answers one wants from
a model from the analysis when selecting neurons for the neural pathways approach.

3.4 Conclusions
In this chapter, we have introduced an approach for neural interpretation using neural
pathways on recognizing textual entailment and named entity recognition. This serves
as a foundation for addressing the issues laid forward in this thesis. By abstracting away
from individual neurons and combining linear probes, task knowledge, and correlation
techniques, insight into the knowledge learned by the neural models have been made
more transparent. And furthermore, the technique can be extended to allow for rich
comparisons between models even when they have dissimilar architectures. We find
this general interpretation method draws similar conclusions to highly domain-specific
analyses, and while it will not replace the need for deep analysis, it provides a simple and
effective starting point for a broad class of models. Chapter 4 will expand the theoretical
guarantees of the method along with a metric for evaluating the interpretability of a
model with the method, and Chapter 5 discusses the limitations of the method along
with a practical walk-through of the method.
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4 Neural Pathway Alignment with Bayesian Networks
Like all neural probe-derived techniques, the neural pathways approach in the previous
chapter is a purely correlation based approach and thus can only hint at the presence
of knowledge encoded within a neural network. We extend the theory of the neural
pathways approach to show that under certain assumptions, the method can be adapted
to optimize for alignment with causal variables within a Bayesian model. Causal
approaches have recently become of interest in the neural network interpretation com-
munity (Hu and Tian, 2022; Geiger et al., 2022; Lin et al., 2022), but have remained
a challenge for post-hoc intrepretability methods that cannot rely on model affecting
interventions (Fan et al., 2021).

Causal modeling is a method for representing the causal relationships within a
system, with a causal relationship defined as a specific type of connection between
two or more variables where a change in one variable (often termed the ”independent”
variable) directly results in a change in another variable (often termed the ”dependent”
variable). Neural networks, on the other hand, are learned functions that map an input
to an output. They have no guarantee of causal reasoning, even when such reasoning
is desirable. From our experiments in the previous chapter, we demonstrated that
coordinated sets of neurons can be identified, and furthermore we showed that the
activations of these pathways can be reasonably aligned with external knowledge such
as task metadata and implicit features (e.g. parts-of-speech, capitalization, etc.).

If a specific task that a neural network is trained to perform has an underlying causal
structure, we may suppose that a neural network, despite the lack of a guarantee to do so,
may learn functions approximating those underlying causal components. Verifying that
a neural model operates with a similar causal structure to those developed by theory can
provide confidence that the model is performing the task in a manner consistent with
human expectation and not finding invalid shortcuts within the data. As confidence in
neural model output validity is a common barrier to entry for adoption of this technology,
this is a step of utmost importance.

The primary contribution in this chapter and thesis is a method for verifying the
presence of and aligning with theoretical causal structures with the flow of data observed
within a neural model. Because of the ability of the neural pathways approach to reduce
the effective number of activations that must be interpreted, we use that as a foundation
for our experiments. We first provide a theoretical overview of how the pathways
approach can be related to causal models, then we provide a new metric to evaluate the
alignment between the pathways extracted by a neural network and the variables within
a causal model. Lastly, we provide a set of experiments to validate the approach.

Real-world problems have complex causal structures that are difficult to exactly
define in their entirety. We therefore build the foundation of this research via synthetic
data generated from a defined Bayesian model where can know exactly how the causal
structure is defined. In later chapters we apply the method on multiple natural language
tasks to demonstrate its applicability to real-world problems. In the remainder of the
chapter, we validate the ability of the method correlate with causal variables and for
the precision and recall-like metrics that we present, accurately represent the quality of
alignment between the pathways and the Bayesian network.
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Figure 4: An example Bayesian network defining some causal structure.

4.1 Correlation of Neural Pathways with Causal Variables
Ideally, it would be possible to create a direct mapping from all of the variables within
a Bayesian network to the parts of a neural network that model the same information.
However, this is non-trivial during a post-hoc analysis because, without interventions,
there are limitations on what information is obtainable.

Consider a neural network that is modeling the process defined by the example
Bayesian network in Figure 4. The only guaranteed overlap between the neural model
and the Bayesian network are the inputs and the output (darkly shaded). Superficial
logic would seem to dictate that in order to correctly model the process of predicting Ŷ
given the INPUTs, the neural network must also model some or all of the intermediate
variables part of the casual structure, A to G. However, it is not reasonable to make
this assumption as it has been repeatedly shown that neural networks find ”shortcuts” to
make predictions (Du et al., 2021; Eisenschlos et al., 2021). This propensity of neural
networks to find unexpected methods to solve tasks is precisely the reason that neural
network interpretability is such an important area of research.

Furthermore, even if the neural model is actually representing the causal structure
defined by the Bayesian network, it may not be discoverable with the resolution that
the Bayesian network may indicate. If one is given only the inputs and outputs, there
may be sets of variables within the causal structure that cannot be statistically separated
from each other. From Figure 4, within each lightly shaded region (e.g. {A,B,C} and
{D,E, F,G}) it is impossible to disentangle the effects of each variable from each other.
At best, one could only conclude that a functional component is correlated with the set of
variables. Separable variables can easily be found by converting the Bayesian network
into a factor graph (Cowell et al., 1999) whereupon separable groups of variables are
visually separated (Figure 5). In practice, this can result in the apparent correlations
between functional components and intermediate causal variables appearing weaker
than expected. It also enhances the importance of choosing good Bayesian networks to
plausibly explain the neural model.

It is thus required to treat the independent sub-graphs of the Bayesian network as
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Figure 5: Factor graph of Bayesian model from Figure 4.

the unit of analysis when it comes to alignment.
PCA, the method of dimensionality reduction used in Fiacco et al. (2019a) does not

guarantee independence between components; it only indicates that variance is maxi-
mized in the orthogonal projection of the data onto the principal subspace (Hotelling,
1933). These orthogonal dimension can be helpful to identify groups of correlated
neurons, but they do not implicitly have any reason to correspond to the intermediate
latent variables in the Bayesian network.

Fortunately, factor analysis (Tipping and Bishop, 1999), a closely related, though
latent variable based, dimensionality reduction technique to PCA, ensures the indepen-
dence of its factors and can be used as a drop in replacement to PCA. The resulting
change to the procedure simply replaces mentions of components for PCA with factors.
Like for PCA, a Varimax rotation should be performed on the factor analysis to yield
more consistent and interpretable factors (Kaiser, 1958).

The reason this simple change allows for a reasonable alignment with the latent
variables in a Bayesian network is as follows: given a neural network, NN , with
activation matrix, A (as above), a factor analysis is performed yielding a set of factors,
F . For each fi, fk ∈ F , fi ⊥⊥ fk|X,Y , where X is the set of inputs to the neural
network and Y is the set of predictions from the neural network. With a sufficient
number of factors such that factors, F , contain all independent factors in A, if there
exists a common latent variable in both NN and factorized Bayesian network, G, with
factors gi ∈ G, then there will be some fi

∝∼ gj . This forms the basis of our alignment.
Excess functional components may represent exploitable biases or artifacts spe-

cific to the dataset while too few functional components may represent an incomplete
Bayesian representation of the task.
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4.1.1 Correlation vs. Causation for Neural Pathways

An important challenge to this work arises from the mingling of the concept of causation
with neural network interpretation. It is important, therefore, to be specific on where
causal relationships exist within this approach. The only causal relationships in this
work are between causally linked variables within the Bayesian network. In this work,
we cannot make any conclusions about causality within the neural network nor can we
make any conclusions involving causality between the Bayesian network and the neural
network.

Like other neural probe techniques, functional components are a purely correlation
based approach and thus can only hint at the presence of knowledge encoded within
a neural network. Our extension extends the approach to allow interpretation via a
structure of connected concepts rather than a set of disparate attributes. We extend the
capability of probing techniques by defining subsections of the model and the theoretical
causal structure of the task that can be reasonably be compared.

4.1.2 Precision and Recall for Evaluating Alignment

In order to compare one model’s ability to align with a causal network with another, we
define precision-like quantity and a recall-like quantity that are meaningful in context
of the alignment of factors of a factor analysis and a Bayesian network. Classically,
precision measures the proportion of correct, positive identifications over the total
number of positive identifications made. Recall, on the other hand, measures the
proportion of correct, positive identifications over the total number of expected positive
identifications. These metrics are designed to measure the correctness and completeness
of a given model, respectively. While the definitions of precision and recall in terms
of ratios of correct positive identifications do not apply to the alignment problem, we
nevertheless want a measure of correctness and completeness.

To satisfy the requirement of correctness, we present the question Does the Bayesian
network explain the activations of the neural network? Our precision metric, therefore,
must indicate that the factors identified as related to the variables in the Bayesian
network do, in fact, correlate with the neural model’s activations. This can be computed
as the average of the best aligned correlations between the factor activations and the state
of the intermediate sub-graph of the Bayesian network. The quantity of best alignment
in this case is the set of one-to-one mappings of factors to states that maximizes the
weighted average. More formally, we can define our precision metric, Palign, with
Equation 1:

Palign(F,G) =

∑
(f,g)∈best(F,G) |rf,g|
min(|F |, |G|)

(1)

where F is the set of factors from the factor analysis, G is the set of factors from the
factorized Bayesian network, best is a function producing the tuples of the best aligned
set of factors, EV (f) is the percent variance explained by factor, f , and rf,g is the
Pearson’s correlation coefficient between f and g over the validation set.

For completeness, we instead present the question Can all of the neural model’s
activations be explained by the Bayesian network? Our recall measure, can thus be
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defined as the weighted average over all the factors from the factor analysis of the
correlation coefficients between a given factor and the state of the sub-graph of the
Bayesian network with which it best aligns. We can define our recall metric, Ralign,
with Equation 2:

Ralign(F,G) =
∑
f∈F

EV(f)×maxg∈G(|rf,g|) (2)

One can see that Palign(F,G) = 1 when all of the uniquely aligned factors are
perfectly correlated with each other and that Ralign(F,G) = 1 when every factor from
the factor analysis correlates exactly with an observed intermediate state of the Bayesian
network.

It is also important to note that we are using the absolute value of the correlation
coefficient because it does not matter for purposes of alignment whether there is a
positive or negative correlation; all that matters is the degree to which they correlate.

4.2 Experiments
To experimentally validate our approach, we designed two sets of experiments. The first
set of experiments is designed to empirically evaluate the ability to extract pathways
from a neural network that align with underlying latent variables in the data. Earlier
in the paper, we provide a theoretical argument for why factor analysis should be a
more appropriate dimensionality reduction technique than PCA for this purpose, and
we are interested in whether that holds in practice. The second set of experiments is
designed to evaluate whether the metrics that we proposed in Section 7.4.2 provide a
good measurement of the alignment between the functional components of the neural
network and the underlying Bayesian network.

For the following experiments, we use synthetic datasets so we can precisely control
the data distributions so we can confidently use a Bayesian that aligns task to test how
well the neural network aligns with it. With natural datasets, it would be incumbent
on the researcher to use their theoretical knowledge of the task to devise a Bayesian
network that represents their understanding or expectation for the underlying process
behind the task.

4.3 Constructing the Synthetic Datasets
For each experiment, a Bayesian network (e.g. Figure 6) and the conditional probability
tables for each of its variables are defined. The specifics of the structure and the
choice of conditional probabilities is dependent of the experiment. From those defined
structures, datasets were generated via forward sampling (Henrion, 1988) using the
PGMPY (Ankan and Panda, 2015) python library for probabilistic modeling. The
number of samples for each dataset were chosen to be approximately the minimum
number of data instances required for neural models used in the experiment to show a
convergence. Through the forward sampling algorithm, we could record the states of
all of the variables in the Bayesian network for each sample. These states could either
be used for input information for the neural network, prediction targets, or latent states
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Figure 6: PGM graph used to generate the synthetic datasets for the experiments in
Section 4.3.1

to attempt to align with learned functional components. For each synthetic dataset, we
performed a 50/50 split into a training and validation set. We did not use any of the
generated data for a separate evaluation set as this is a method for error analysis of a
neural model, and thus, like tuning, it would be invalid to use on dedicated test data.

4.3.1 Comparing Factor Analysis with PCA for Interpretable Functional Compo-
nents

To compare the viability of the two dimensionality reduction techniques for extracting
functional components, we consider how robust each technique is to recovering alignable
functional components when varying the coupling strength between variables of the
underlying distribution. Coupling strength, in this context refers to the certainty that
a dependent variable in the Bayesian will be in a specific state given the states of its
parents.
Experimental Setting: To implement this condition, defined a set of values to represent
high, low, and inverse coupling (0.8, 0.5, and 0.2 respectively). These values were used
to populate the conditional probability tables (CPT) of the PGM in Figure 6 as values for
p(∗ = 1|...) where ∗ refers to each variable in the Bayesian network (the corresponding
p(∗ = 0|...) was set to one minus the value ensure the validity of the probability
distribution). We generated a full dataset of 1,000 samples for each permutation of
settings, yielding 6,561 separate synthetic datasets.

We defined two tasks to train a separate neural network on for each of the synthetic
datasets generated (i.e. 13,122 uniquely trained neural networks). For the first task, we
used the sampled states of x as the input for the neural network and the states of y as the
predicted class for the neural network. For the second task, we used the sampled states
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of a and b as the input to the neural network with the same predicted class. The values
of states of the remaining variables that were sampled from the model for each task were
reserved for analysis. These values are the states of the variables that the models sere
not given explicitly, therefore if there is observed a correlation between the activations
(abstracted via functional components) and the variable values, the neural network
learned to encode at least some of the information contained within that variable.

Each trained neural network had functional components extracted such the the
percent of explained variance was at least 99% via each dimensionality reduction
technique. It was defined that a functional component had aligned with an unobserved
variable if a trained logistic regression model given the functional component as input
could predict the unobserved variable with a Cohen’s κ of greater than 0.6 indicating at
least ”substantial agreement” (Warrens, 2015).
Measuring Robustness We define robustness as the ability of a dimensionality reduction
technique to identify valid functional components in a consistent and repeatable manner.
To evaluate this quantity, we train a classifier for each technique to predict whether
or not it will find an aligned functional component from the neural model given the
settings of for the CPT of the Bayesian network. A high accuracy in this classifier would
indicate that there are more well defined boundaries with which the method is reliable.
This is an important quality to have in order to trust the interpretation.

Furthermore, it is important that there is not an absolute loss of performance when
switching to the new method. In this respect the difference in percent of conditions in
which a functional component has been successfully identified should be small or in the
favor of the new method.
Model Architecture for Analysis We used a simple feed forward neural network with
two hidden layers for both tasks. The network for the first task had one input, x, while
the network for the second task had two, a and b. Both networks had two, 8 unit hidden
layers. An excess of neurons were used to provide leeway for multiple pathways to arise
if necessary and overfitting was not a concern as we could generate as much data as
necessary to mitigate it. We expect there to be very few pathways given the simplicity
of the task.

4.3.2 Evaluation Metric Validation

In this set of experiments, we validate the reasonableness of the alignment precision
and recall metrics we defined in Section 7.4.2. As our interest, in the long term, is in
understanding neural models for NLP, we specifically designed our synthetic dataset
to have some similar, though considerably simplified, properties to text. Specifically,
we explore sequential data where each time step is dependent on a previous time step.
This type of data furthermore allows for a more stark comparison between models as
we can use neural architectures that have a different capacity for modeling sequential
dependencies. Because the proposed metrics are primarily meaningful in the comparison
of values between different models or Bayesian networks, the ability to have a clear
difference between the models that we use in this experiment is advantageous.
Experimental Setting: To realize the sequential dataset, we defined the Dynamic
Bayesian network (Koller and Friedman, 2009) depicted in Figure 7. We generated
1,000 sequences from the PGM, split into 500 sequence train and validation sets. Each
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Figure 7: Dynamic Bayesian network used to generate the synthetic datasets for the
experiments in Section 4.3.2

sample is a sequence containing 10 elements where each element has 2 input features
(at and bt) and a binary class output (yt). The intermediate variable, xt, is dependent on
both at and bt as well as xt−1.

We specifically designed the CPT of the Bayesian network to have a certain set of
behaviors such that we could easily identify them within the functional components.
Depending on the state of xt−1, xt would represent a soft version of one of the following
Boolean functions of a and b: XNOR if xt−1 = 1, NAND if xt−1 = 0, or XOR if t = 0.
Furthermore yt was simply set to be a soft NOT of xt, and the priors of a and b were set
to p(∗ = 1) = 0.5.

Functional components were extracted from each model for each instance in the
validation set and their alignment scores were computed with respect to the states of the
unobserved variables, xt and xt−1. We then performed a number of qualitative tests to
verify the difference in scores were reasonable. First of these tests is to graph the average
correlation between the functional component and the attributes over the 10 steps in the
sequence. If a functional component is well aligned with an attribute, the correlation
should stay high throughout all of the elements in the sequence approximately equally.
The second test is to graph the average factor activation for each step of the sequence
for instances where a certain state was present. This test can help qualitatively identify
what function a functional component is performing, by showing potential combinations
of states that indicate activity in the factor.
Models for Analysis: We use two models for this set of experiments with differing ca-
pabilities for modeling sequential dependencies: a feed-forward neural network (FFNN)
that only looks at each element of the sequence independently, and an LSTM (Hochreiter
and Schmidhuber, 1997) which can use context for its predictions. The FFNN takes in 2
inputs and has 2 fully connected hidden layers with 8 hidden units each and a sigmoid
activation. The LSTM has 8 hidden units and makes a prediction at each time step (i.e.
not seq2seq (Wiseman and Rush, 2016)).
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Figure 8: Example of the graphs generated for a given factor for qualitative analysis in
Section 4.3.2.

4.4 Results and Discussion

Unobserved
Task Variable PCA FA

X −→ Y A 45 62
B 50 57

A, B −→ Y X 117 97

Table 4: Number of CPT settings (out of 6,561) where the given unobserved variable
was alignable with a factor extracted from the neural network trained on the given task.

4.4.1 Comparing Factor Analysis with PCA for Interpretable Functional Compo-
nents

For both PCA and factor analysis, only a very small fraction of settings for the con-
ditional probability table could be aligned with the activations of the neural network
(Table 4). This is not unexpected as when there is very low coupling between the vari-
ables (i.e. a coin-flip for whether a state in influenced by its parent), it is not reasonable
to expect that the model will be learn that connection. Qualitatively, we observe this
behavior. Furthermore, because a is not conditionally independent with b given x, in
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cases where we are given x as the input, it is likely that there will be some uncertainty
about a and b if they both contribute significantly to x. This finding should be a warning
to all probing tasks as there is a narrow band of relationships between variables that can
reliably be detected. However, in practice, there is usually very strong coupling between
variables that are of interest. PCA and factor analysis perform similarly in this respect
so there is not a considerable loss in performance by using the different dimensionality
reduction technique.

Unobserved
Task Variable PCA FA

X −→ Y A 0.907 0.920
B 0.674 0.921

A, B −→ Y X 0.350 0.801

Table 5: Accuracy of the decision tree model for predicting whether or not a setting for
the CPT would be alignable with a factor.

On the other hand, factor analysis significantly outperforms PCA when it comes to
systematically identifying under what conditions alignment can happen. Table 5 shows
that while the ability to distinguish between settings where a can be aligned via factors
are relatively similar for both PCA and factor analysis, the accuracy of the decision tree
classifier was significantly higher (p < .001) for all of the attributes. We attribute this
performance increase to the probabilistic formulation of factor analysis that can be a
better analogue to the variables within the Bayesian network. It is also notable in that the
decision trees for the PCA factors are considerably simpler than for the factor analysis.
This is likely because only simpler rules could be made to approximate the division as
there was insufficient consistency within settings as compared to factor analysis.

4.4.2 Evaluation Metric Validation

Model Num. Factors Task κ Palign Ralign

FFNN 2 0.000 0.342 0.579
LSTM 7 0.348 0.264 0.400

Table 6: Performance (Cohen’s κ) and alignment metrics for FFNN and LSTM from
Section 4.3.2.

At first, there seems to be a contradiction in the results for the experiment to validate
the alignment metrics. In Table 6 the LSTM reaches fair alignment with the synthetic
task while the feed-forward neural network fails entirely (in fact it only predicted TRUE
for all instances on the validation set). However, in both of the alignment metrics, the
FFNN out performed the RNN. This was highly unexpected as it was our hypothesis
that better model would likely show better alignment. If we do the qualitative analysis
to try to examine why the alignment is better for the FFNN, we do, in fact, find that it
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the activations of the FFNN do more accurately reflect the Bayesian model, validating
in a quite unexpected way, that the metrics are reasonable.

The primary reason that the LSTM performs better than the FFNN on the task is
best illustrated by the two graphs in Figure 24. In the top graph, each line indicates
the Pearson’s correlation coefficient between Factor 1 and attributes derived from the
functions that the Bayesian network approximates for each time step in the sequence.
The story that this tells is that, over the course of the sequence, Factor 1 gets more
correlated with the function a NAND b, the top red line. As mentioned in Section 4.3.2, a
changing correlation over time is a good indicator that the factor is not aligned with the
attribute. In this case, we can use the bottom graph to see that early on, this factor is the
most active in the beginning and continues to be somewhat active when the input b = 0.
Because of how the Bayesian network was defined to generate the data, sequences
generally trend such that x will be 1 more often than not, especially if either of the
inputs are 0. So what this factor is likely doing is tracking how far along the sequence
is as it means that y will more likely be 1. That is, the alignment metrics enabled us
to find that the recurrent neural network was finding a shortcut, even on this extremely
simple task.

The FFNN, on the other hand, had a factor that was consistently highly correlated
with a NAND b which turns out to be the most common function that the Bayesian
network performed while generating the data.

4.5 Conclusion
Neural networks, with their intricate operations and architecture, pose an intriguing
challenge when attempting to align their behaviors with structures such as Bayesian
networks. Neural networks’ propensity to find unconventional prediction routes empha-
sizes the necessity for interpretative tools that map functional components to features,
grounded in human understanding.

Our exploration into this alignment problem highlighted the merits of factor analysis
over more simpler dimensionality reduction techniques, such as PCA. While PCA is
very fast and scalable, factor analysis, with its emphasis on factor independence, offers
a closer alignment with the variables of Bayesian networks. This is not to suggest
that factor analysis is the ultimate tool as other dimensionality reduction techniques
that optimize factor independence (e.g. Independent Component Analysis) share this
property. However, it does represent a step toward theoretically sound component based
neural network interpretability.

In the realm of neural probing, the distinction between correlation and causation
remains a crucial aspect. Although Bayesian networks offer a structured perspective on
causality, making definitive causal claims within the complex web of neural networks
is not straightforward. Yet, the methodologies detailed in this work have extended
our interpretative capabilities, allowing for a richer understanding of networks through
interlinked concepts, as opposed to isolated attributes.

Precision and recall, reconceptualized for this unique challenge, provide an in-
sightful lens to gauge alignment success. The conceptual metrics, Palign(F,G) and
Ralign(F,G) bring clarity to the alignment task. They offer a methodical way to
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quantify the alignment between the complex behavior of neural networks and the
deterministic structure of Bayesian networks.

In wrapping up this chapter, it’s evident that optimizing pathways for independence
is a meaningful step forward in the broader context of neural interpretation. The insights
and methodologies laid out will likely serve as invaluable reference points for upcoming
endeavors in the domain of neural network interpretability. In later chapters we explore
the limitations of this method and enforcing similar independence conditions on the
human understandable features used in the analysis.
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5 Complete Neural Pathways Approach with Model
Comparison

The overarching goal for the neural pathways approach is to be able to use the abstrac-
tions of neural pathways to identify causal connections learned by the network and
distinguish these connections from spurious correlations or proxy variables. Because
of the considerable differences between the concepts of a neural network and a causal
model, we must rigorously define the progression of steps from the inputs and outputs
of the network to the knowledge of a causal structure for a task that an expert would
have. We visualize the path via a comprehensive flowchart (Figure 9) where the givens
of the process (rhomboid boxes) follow a series of steps to the potential outcomes of the
process (rectangle boxes marked in purple). Later in this chapter we examine each of
the steps in the flowchart (circular boxes) in more detail.

In order for this procedure to be successful in practice, there are two sets of require-
ments that must be met: the first set is simply the required data that one must have to
perform the process, the other is a set of assumptions we make regarding the neural
network and the data which through this chapter and proposed work demonstrate are
necessary and sufficient to result in the outcomes provided.

There are two key assumptions that underlie this method: first, causal connections
exist within the data with some detectable strength, there may be confounds, irrelevant
knowledge, or noise, but they must exist; second, there can be many pathways, but only
some of them matter. Pathways that either contribute little to the model outcome or
contribute strongly to a very small number of cases, can be safely ignored.

Given the assumptions, the neural pathways method has four possible outcomes for
each pathway/attribute pair:

1. The pathway does not have sufficient influence over the outcome of the model to
warrant further analysis.

2. There is no evidence of a causal relationship between the the pathway and the
attribute.

3. The attribute is likely a proxy for the function that the pathway is performing.

4. The function that the pathway is performing likely includes the attribute.

These outcomes can be grouped into two categories: the first two narrow down the
pathways that can be analyzed, while the latter two distinguish between the possible
reasons that there exists a correlated pathway/attribute pair. In the remainder of this
chapter, we walk-through an example of the process to provide intuition on how these
outcome arise and the decisions that must be made to be confident in the results.

5.1 Example Walk-through of the Flowchart
To aid in understanding the intuitions behind the flowchart, we present a simple example
based in a real-world task to illustrate where the decision points in the chart arise and
how one could arrive out each outcome.
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Figure 9: Flowchart illustrating the process of determining causal connections within a
neural net via neural pathways.
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Figure 10: Detailed flowchart for determining sufficient influence of pathways. The
input to the chart is a set of pathways extracted from a neural model and the output is a
set of pathways that are worth investigating.

The task that we use for this walk-through is Named Entity Recognition (NER)
where a model needs to identify the named entities within a text. For this specific
example, we assume that we are given a complex, probe-able, neural network that
was trained on data derived from a hypothetical story called The Wacky Adventures of
Xavier and Xander. For illustration purposes, we have selected three attributes that
we hypothesize are potentially being utilized by this network: (A) Word is in a list of
names, (B) Word begins with a capital letter, and (C) Word follows a ‘.’. The text set for
this task where we perform our example analysis uses data derived from a hypothetical
book called The Unabridged History of the Xylophone. The process for the neural
pathways approach can be organized into three sections based on what outcomes are
being distinguished: Determining sufficient influence, discovering evidence of a causal
relationship, and deciding if that relationship is a proxy or not.

5.1.1 Determining Sufficient Influence of Pathways

The first phase of the process, broken down into more detail in Figure 10, is to select neu-
ral pathways for analysis. With complicated models with many potential pathways and
attributes, it can be expensive to perform an analysis for every possible pathway/attribute
pair. However, it is important to ensure that the pathways we choose to perform the
analysis on will be sufficiently relevant to the questions we want to ask. In our example,
we run the model on the test set to extract the activations which we can use to generate
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pathways via the procedures from earlier chapters. For purposes of our example, we
assume that many pathways are generated at this step thus requiring a method to select
the most relevant.

This is the first decision point in the process. We correlate each pathway with the
outcome of the model to get a rank for how influential the pathway is within the model.
We must then choose a threshold for the correlation, below which we will consider
the pathway not sufficiently important to continue analysis. It is not obvious what this
threshold could be as it balances the number of pathways that will need to be analyzed
with the amount of information retained. If it is set too high, there is a possibility that
notable causal connection could slip by unnoticed; if it is too low, than considerable
effort will be allocated to inconsequential pathways. We devise the experiment in
Section 5.2.1 to provide an intuition on how varying this threshold can influence the
outcomes of the procedure. It is thereafter at the discretion of the researcher for where
along the scale they desire to set their threshold.

5.1.2 Discovering Evidence for Causal Relationships

To continue the example, we determine if there is any potential connection between
the pathways and the attributes available. Let us assume that from the previous step,
three pathways had correlations with the outcome that exceeded our threshold. We then
compute the correlation of each of the three pathways that we identified with the three
attributes that we are interested in. we find that one pathway (Pathway A) correlates
to words that are in a list of names, one pathway (Pathway B,C) correlates with both
words that begin with a capital letter and words that follow a ‘.’, and the last pathway
does not correlate with any of the attributes we have. We can therefore determine that
we have no evidence that the last pathway has a causal relationship within the model.
It is possible that there exists a causal relationship that it corresponds to, but we are
limited by what attributes we include in our analysis.

What is meant when it is said that the pathways correlate with an attribute must be
specified further. It is another threshold that must be defined. The higher the threshold,
the more clearly the pathways would appear to be related to the attribute. However,
too high and noise within the data can obfuscate meaningful connections. Fortunately,
the boundaries of what amount of causal connection can be detected via correlation is
the subject of the experiments in Section 4.2, and we can apply those lessons towards
choosing this threshold.

5.1.3 Deciding if a Pathway is a Proxy

Finally, for the remaining two pathways that were determined to be correlated with one
or more attributes, we must distinguish between the case where the model learned and is
using the attribute manner expected from a theoretical understanding of the task, versus
the case where the model learned a proxy for the attribute. In our example, we find that
Pathway A correlates with the error cases of the model while Pathway B,C does not.
We conclude that Pathway A is likely a proxy for the Word is in a list of names attribute.
We examine the error cases and find that in the test set, “Xylophone” is often present
when the model makes a mistake when Pathway A is active. We might then be able to
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Figure 11: Detailed flowchart for discovering evidence for causal relationships in
pathways. The input to the chart is the set of pathways that are worth investigating and
the set of potentially relevant attributes. The output is the sets of attributes correlated to
each pathway.
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Figure 12: Detailed flowchart for deciding if a pathway is a proxy or not. The input to
the chart are the sets of attributes correlated to each pathway.

intuit that the pathway has actually learned to identify words the begin with the letter
‘X’ as in the training data, the two most common words that started with ‘X’ were the
names of the characters in the story (“Xavier” and “Xander”). That a word begins with
‘X’ is not a reasonable argument for deciding whether a word is a named entity from the
theoretical perspective and so on the test set where there were many instances of the
non-named entity “Xylophone,” the model made mistakes. On the other hand, because
Pathway B,C is performing the function that is equivalent to the more theoretically
sound attributes, it does not tend to contribute to errors in the test set.

As data outside this example can be full of noise and confounds, the threshold
for how correlated a pathway must be with the error cases of the model for it to be
considered a proxy must be defined precisely. We construct the experiment described in
Section 5.2.2 to examine the extent to when confounds can be identified via this method.
This allows for a clear limit to the capabilities of this method providing the parameters
within which it is valid.

5.2 Synthetic Alignment Experiments
In line with the intuition provided in Section 5.1, two additional experiments are
proposed, each building upon each other with increasing complexity. Because the
purpose of these experiments is to get precise measurements the of correlations between
a neural model and latent causal variables, we use a series of synthetic datasets. Through
these datasets we can precisely control the causal structure of the data in a way that is
impossible for natural data.

A similar method is employed as for the experiments in Section 4.2 to generate the
synthetic datasets. A PGM is defined and Gibbs sampling is used to get values for the
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variables. With this method we can manipulate the extent to which there is a causal
connection between variables, the strength of that connection, and whether there are
additional variables that can be used as proxies.

Furthermore, we can include additional data in the synthetic datasets that can be
generated from a different distribution or set of rules that can serve as data points that
are exceptions to the general rules defined in the PGM. Along with the ability to add
noise to sampling procedure, this allows us to validate the robustness of the method to
extract valuable information from the neural network and set a reasonable threshold to
maintain the most signal.

5.2.1 Threshold for Influential Pathways

To more precisely define the what the optimal threshold is for a pathway’s correlation
with an attribute to indicate that a pathway is influential enough to be relevant for
analysis, we repeat the steps from the experiment described in Section ?? several times.
On each repetition, we vary the threshold for which pathways we analyze. We record for
the purposes of this experiment the resulting band of interactions between the random
variables that the method could discover.

The measure of correlation that we use for this experiment is the Pearson’s corre-
lation coefficient between the the pathway activation and the model prediction. If the
model is a multi-class classifier, we use the maximum absolute values of the correlations
between each classes. We do this so we can be confident that we do not miss an impor-
tant positive or negative correlation, erring on the side of including more pathways for
analysis.

Changes in the boundaries of the method from truncating the neural pathways
analyzed can be used to determine an acceptable threshold for choosing which pathways
to explore in detail. The results of this experiment can inform future users of this
experiment on what information or discovery potential is lost by reducing the number
of pathways explored. This would allow them to be confident that they are not missing
major connections within their model while using their analysis time most effectively.
Potential Challenges: It is possible that with experimental settings from Section ??, the
resulting model will have insufficient unique pathways to make the threshold meaningful.
Potential modifications to the method, should this be the case, may include an increase
in the complexity of the PGM used to generate the synthetic data. This may enable the
model to learn more independent functional components.

5.2.2 Threshold for Proxy Connection

Our second proposed set of experiments is designed to determine what degree of
correlation between an attribute and the mistakes a model is sufficient to determine that
the model’s knowledge of the attribute is resulting in errors in the task. We vary the
underlying PGMs used to generate the synthetic data that for a similar experimental
structure as before. This enables us to exhaustively test for types of connections found in
causal structures including confounds that affect either or both of the inputs and outputs
visible to the neural model.
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Figure 13: Exhaustive set of PGM structures used to determine when our method can
distinguish between causal networks where there is a causal link from e to y (green) and
those that do not (red). Graphs that have gray shading have dependency cycles and are
excluded from the experiments.
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Types of Causal Connections: In our experimental setting a and b correspond to the
inputs into the neural model and the sampled value of y is the value that the neural model
is trained to predict. Figure 13 shows all of the perturbations of this causal structure to
include some other variable e which we will use as the attribute of interest for the neural
pathways analysis.

This list is exhaustive subject to two constraints: (1) there is never to be a direct
connection between a and b and (2) b will never have a connection to a variable that
a does not have a connection to. The first constraint arises from the requirement of
independence for pathways to serve as analogs to causal variables that we explore in
Chapter 4. The second constraint is enforced because we ignore symmetries in the
structure as this is a synthetic dataset that is only an analog of possible structures found
in natural data. Furthermore, our experiments also do not use several of the causal
networks represented in Figure 13 colored in gray. These networks have cycles and
cyclic causal dependencies are out of scope for this work.

We organize these causal networks into cases where the causal connection is valid
for the model to directly use (colored green), that is, there is a causal path from e to y,
and cases where it would be considered a proxy (colored red).
Expected Results: First we determine if the sampled value of e is correlated with a
pathway in the neural model using the threshold discovered in the previous experiment.
We will the measure the correlation between the sampled value of e with the error cases
in the model. As the data was generated probabilistically, the model should not be able
to obtain a perfect prediction on the test set despite the causal structure being so simple.

Because we know what the causal connection is between e and y, we can determine
if there is a difference in the recorded error case correlation between cases where there
is a causal path from e to y and cases where there is not causal path.
Results: From Figure 13, only a subset of the causal relationships yielded data from
which a pathway could be correlated to e when the neural network was trained on y given
a and b. A qualitative analysis of these failure modes lead to the following conclusion:
for a specific pathway, p, that will be correlated to attribute, e, to be able to be learned
by a feed-forward neural network, the following condition appears to hold: e must be
an ancestor of at least one element of the set of input variables, X. If we repeat the
experiment without a direct connection between a and y, we see that this qualitative
observation holds even when e is a mediator between a and y.

Furthermore, if we swap the direction of the causal influence of the edges between a
and y and b and y, we find that there only is a pathway correlated to e when e is a direct
cause of y. It is notable, however, in this case that the pathway correlated with e only so
far as e correlated with y. In fact, with our Bayesian network definition, the pathway
almost perfectly correlated with a ∧∼ b. This further supports the previous conclusion in
this section.
Challenges: During our analysis, we witnessed a surprising amount of shortcuts learned
by the neural model even when the underlying causal structure is incredibly simple. This
means that it may not be feasible to generate data that would guarantee the presence of
a specific pathway in the neural model. Because of this, getting a well defined threshold
for what is required to witness a pathway in general terms may be elusive.

It is also possible the the selection of conditional probability tables in the PGM may
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a b e Is e causal? NN κ max(|r(pathway, e)|)

A | E B | E E | Y No 0.828 0.031
A | E B | E E←− Y No 0.804 0.212

A −→ E B | E E | Y No 0.862 0.324
A −→ E B | E E←− Y No 0.845 0.220
A −→ E B −→ E E | Y No 0.876 0.276
A −→ E B −→ E E←− Y No 0.833 0.338

A | E B | E E −→ Y Yes 0.761 0.028
A←− E B | E E | Y Yes 0.869 0.719
A←− E B | E E −→ Y Yes 0.814 0.784
A←− E B←− E E | Y Yes 0.830 0.847
A←− E B←− E E −→ Y Yes 0.804 0.768
A←− E B −→ E E | Y Yes 0.884 0.664
A←− E B −→ E E −→ Y Yes 0.825 0.736
A −→ E B | E E −→ Y Yes 0.758 0.372
A −→ E B←− E E | Y Yes 0.884 0.775
A −→ E B←− E E −→ Y Yes 0.770 0.761
A −→ E B −→ E E −→ Y Yes 0.714 0.216

Table 7: Number of CPT settings (out of 6,561) where the given unobserved variable
was alignable with a factor extracted from the neural network trained on the given task.

have an out-sized effect on the outcome of this experiment. To test this, one would need
to do an exhaustive search over different settings for the conditional probability tables.
Because, even at the scale of this experiment, an exhaustive search has an intractable
number of possibilities, we require a different way to test this.

5.2.3 Expanding Complexity in Underlying Causal Graphs

From the first part of this set of experiments, the results imply that for the simplest forms
of causal relationships in the underlying data, a simple feed forward neural network
does not learn spurious correlations in the data. This held true even when there was
an indirect causal path and a dataset constructed with a sampled bias. However, from
multitudes of research in this field () we know that neural models do learn spurious
correlations that are often undesirable for the tasks they are being used to solve. We thus
devise an experiment to explore the question: how complex do they systems underlying
a dataset need to be for these spurious correlations in learned neural models to appear?
Systematically Adding Complexity to Causal Graphs: There are three locations we
can add influence from new causal variables to expand the complexity in the Bayesian
networks from Section 5.2.2: the new variables can influence the inputs, the new
variables can influence the class value, and the new variables can be mediators between
the inputs and the class value.
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Figure 14: Flowchart addition for meta-pathway based model comparison.

5.3 Independent Meta-pathways for Model Comparison
We introduce the idea of meta-pathways as a method to compare models to determine
if one or more neural models are approaching a task in the same way or in a different
way. To formalize this method, we add on to the flowchart introduced in this chapter,
creating a new set of outcomes and a new threshold, and define the key concept of
functional groups which serves as the core mechanism for constructing meta-pathways.
Furthermore,, feature, and feature group.

The new section of the flow chart, Figure 14, takes as input the extracted pathways of
all of the different models that are being compared and results in a set of meta-pathways.
The loadings that a model’s pathways have on the meta-pathway indicate how correlated
those pathways are with the function that the meta-pathway has extracted. Therefore,
there is a threshold for the loading that determines if above the threshold, the pathways
are performing the same function.

5.3.1 Walk-through

Building upon the Named Entity Recognition example earlier in the chapter we can walk
through the method for model comparison. We assume that we have two neural models,
trained on the same data as before. One of these models is a simple feed-forward neural
network that is given a word and the characters within the word and predicts if it is a
named entity or not. The second model is a bidirectional sequence model that takes in
each word in the text as a sequence and predicts the sequence of named entities in the
text.

Each one of these models have different information that they have access to: the
first model has sub-word information, and the second has context around each word. We
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Figure 15: Diagram visualizing the structure of the meta-pathways alignment methodol-
ogy. Nodes of each color represent correlated values.

extract pathways from each model on the test dataset and merge the resulting matrices
so the meta-pathways can be extracted.

When performing the meta pathways, we three meta pathways, one of which includes
has high loadings on only pathways from the first model, one that has pathways from
only the second, and the third has a mix of both. We can then conclude that while there is
overlap between the models each is solving the task differently. And upon performing a
pathways analysis, we may find that only the sub-word model pathway seems to capture
Word that begins with a capital letter, while the sequence model pathway captures
Word follows a ’.’. The pathway that they shared may not align with an attribute that
we have elected to use, but indicates that there is an attribute that we have yet to find
that both models leverage to make predictions.

5.3.2 Functional Components and Groups

From Chapter 4 functional components, i.e. neural pathways refer to the learned
functions of a neural network. We might draw an analogy to how one can define
and describe the common features between mammals by comparing their common
and unique characteristics. In this analogy, a particular component of a dog may be
a “dog leg”. In a neural Automatied Essay Scoring (AES) system, these would be a
group of neurons that have correlated activations when varying the input essays. The
approach to extracting these pathways from a neural network consists of finding the sets
of coordinated neuron activations, summarized by the following steps:

1. Save the activations of neurons for each data instance in the validation dataset into
an activation matrix, A of size M ×N , where M is the number of data instances
in the validation set and N is the number of neurons being used for the analysis.

2. Perform a dimensionality reduction, such as Principal Component Analysis
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(PCA) (Hotelling, 1933), on A to get component activation matrix, Tmodel of size
M × P , where P is the number of principal components for a given model.

The functional groups that form the meta-pathways are collections of similar func-
tional components. Continuing the analogy, they would be compared to the more general
concept of a “leg”. We compute functional groups by concatenating the dimensionality
reduced matrixes, Tmodel, of the two models that are to be compared and performing an
additional dimensionality reduction over that matrix to get a matrix of group activations,
T . The functional components that are highly loaded onto each functional groups are
considered members of that group. An important departure from Fiacco et al. (2019a),
stemming from the limitation that does PCA does not guarantee independence between
components, is that we use Independent Component Analysis (ICA) (Comon, 1994)
instead. ICA is a dimensionality reduction technique that maximizes the independence
between components, resulting in more validity in the technique’s resulting alignments.

To determine if a functional group is influential in the performance of the model
(designating it an important functional group), we can still compute the Pearson’s
correlation coefficient between each column of the group activation matrix and the
predictions of the model, the errors of the model, and the differences between the
compared models.

5.3.3 Independent Feature Groups

Features are human understandable attributes that can be extracted from an analysis
dataset. In the analogy the features would represent potential descriptors of a com-
ponents of a mammal, e.g. “hairy”. In an AES context, these features may manifest
as “no capitalization after a period”. Ideally, it would be possible to create a direct
mapping from each of the functional components to each of the features for which the
functional component is related. However, this is non-trivial during a post-hoc analysis
because, without interventions, there are limitations on what information is obtainable.
Specifically, because features are not necessarily independent from each other, their
correlations cannot be separated from each other, yielding imprecise interpretations. It
is thus required for only independent features to be used as the unit of analysis when
it comes to alignment with functional components. Unfortunately, in practice, this is
a prohibitive restriction and most features that would be interesting are going to have
correlations.

Fortunately, much in the same way that we can use ICA to extract independent
functional components from a neural network’s activations, we can use it to construct
independent feature groups that can be reasonably be aligned with the functional groups
of the neural networks. In the analogy, these independent feature groups can therefore,
be thought of as collections of descriptive terms that can identify a characteristic of
the mammal, such as “an appendage that comes in pairs and can be walked on” which
would align with the “leg” functional group. In AES, an example feature group may
be “uses punctuation improperly”. It would be expected that this feature group would
align well with a functional group in a neural AES system that corresponds with a
negative essay score. Furthermore, feature groups for AES can be thought of as being
roughly analogous to conditions that would be on an essay scoring rubric (as well
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as potentially other features that may be intuitive or obvious to human scorers but
contribute to accurate scoring).

The specific process used to define these groups is to perform a dimensionality re-
duction on each set of feature types that may have significant correlations and collecting
them into a feature matrix. We do this process for each feature type rather than over
all features at once because spurious correlations between some unrelated features may
convolute the feature groups, making them far more difficult to interpret.

5.3.4 Alignment

Using ICA as the dimensionality reduction, the independent functional groups of the
neural model can reasonably align with the independent feature groups using the fol-
lowing formal procedure: given a neural network, N , with activation matrix, A (as
above), a independent component analysis is performed yielding a set of functional
components, F . For each fi, fk ∈ F , fi ⊥⊥ fk|X,Y , where X is the set of inputs to the
neural network and Y is the set of predictions from the neural network. With a sufficient
number of components such that F contains all independent functional components in
A, if there exists a common latent variable in both N and the set of independent feature
groups, G, with components gi ∈ G, then there will be some fi

∝∼ gj .
Throughout the following sections, we explore the use of meta-pathways in the

comparison of AES models.

5.4 Automatic Essay Scoring Experiments
In this section, we delve into the specific methodology used to analyze the activations
of the four transformer models for AES, as well as the steps taken to prepare the data
and features for this analysis.

5.4.1 Datasets

Although scoring rubrics are specific to the genre and grade level of a writing task,
there are commonalities between each rubric that allow their traits to be reasonably
combined for modeling. All our rubrics, for example, include LANGUAGE (and style)
and ORGANIZATION traits, though their expectations vary by genre and grade level.
The generic MAIN IDEA trait corresponds to “Claim” and “Clarity and Focus” traits,
and SUPPORT corresponds to ”Support and Development” as well as ”Analysis and
Evidence.” Rubrics and prompts were developed for validity, and essays were rigorously
hand-scored by independent raters in the same manner as described in West-Smith et al.
(2018b).

For each generic trait, the training set was sampled down from over 50,000 available
essays, responding to 95 writing prompts. Essays from 77 prompts were selected
for the training set, and another 18 were held out for evaluation. Within each split,
essays were sampled to minimize imbalance between essay score, genre, grade level,
In the un-sampled data, longer essays tend to be strongly correlated with essay score,
risking overfitting to this surface feature. Similarly, among the subset of data where
school district data was available, districts with predominantly Black enrollment were
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under-represented among essays with a score of ”4” across all traits. To counteract
these potential biases, the available data was binned by length and district demographic
information for each score, genre, and grade level, and essays were under-sampled
from the largest bins. In addition to these balanced essays, about 800 “off topic” essays
representing nonsense language or non-academic writing were included in the dataset,
with a score of zero.

5.4.2 Essay Scoring Criteria

Essays were scored separately by human scorers based on four distinct traits, namely
Organization, Main Idea, Support, and Language. The criteria are described below:
Organization: The overall structure and coherence of an essay. A well-organized essay
presents ideas in a logical and easy-to-follow manner, with clear transitions between
paragraphs and a clear introduction and conclusion that frame the essay’s argument.
Main Idea: The presence of a central thesis or argument in an essay. A strong essay
will have a clear, focused main idea that is supported throughout the essay by relevant
evidence and analysis.
Support: The presence of evidence and examples to back up the main idea of an essay.
Effective support is relevant, convincing, and logically connected to the main idea, and
may include quotations, statistics, personal anecdotes, or other types of evidence.
Language: The overall quality of writing in an essay, including grammar, vocabulary,
sentence structure, and style. Strong language use enhances clarity and precision,
engages the reader, and conveys the author’s tone and purpose.

5.4.3 Models

Longformers are a transformer-based neural network architecture that have gained
prominence in various NLP tasks (Beltagy et al., 2020). In the context of AES, each
generic trait’s model is a Longformer with a single-output regression head, fine-tuned
on the trait’s balanced dataset: For the remainder of this paper, the model fine-tuned on
a given trait will be referred to as “the TRAIT model” (e.g. the ORGANIZATION model)
for simplicity.

Although ordinal scores from 0 to 4 were used for sampling and evaluation, the
training data labels were continuous, averaged from rater scores. Essays were prefixed
with text representing their genre (e.g., ”Historical Analysis”) and prompt’s grade range
(e.g., ”grades 10-12”) before tokenization, but no other context for the writing task
(e.g., the prompt’s title, instructions, or source material) was included. In addition
to Longformer’s sliding attention window of 512 tokens, the first and last 32 tokens
received global attention.

Scores were rounded back to integers between 0 and 4, before evaluation. On the
holdout prompts, overall Quadratic Weighted Kappa (QWK) ranged from 0.784 for
MAIN IDEA to 0.839 for LANGUAGE, while correlation with word count remained
acceptably low: 0.441 for LANGUAGE up to 0.550 for SUPPORT.

The activations of the Longformer model were saved for each instance in the analysis
set at the “classify” token to create a matrix of activations for the functional component
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extraction.

Model A Model B # Essays Extracted Features # Independent Feature Groups # Aligned IFG

ORGANIZATION MAIN IDEA 407 148 114 24
ORGANIZATION LANGUAGE 275 118 86 39
ORGANIZATION SUPPORT 144 90 63 37
LANGUAGE MAIN IDEA 341 129 95 26
LANGUAGE SUPPORT 72 67 38 23
SUPPORT MAIN IDEA 260 127 94 27

Table 8: Comparing analysis dataset size and numbers of extracted features for each of
the model comparisons, identified by the Model A and Model B columns.

5.4.4 Features

The features employed in this analysis encompass statistical properties of the essays,
tree features generated from Rhetorical Structure Theory (RST) parse trees of the essays,
essay prompt and genre, a combination of algorithmically derived and human-defined
style-based word lists, and certain school-level demographic features. A description of
each feature type is provided below:
Statistical Features: While statistical features such as essay word count are often good
indicators of essay score, they are not intrinsically valuable to the different traits that our
models are scoring. We thus want to see lower alignment with these features to indicate
that the model is not overly relying on rudimentary shortcuts scoring an essay. We also
include average word length, essay paragraph count, essay sentence count, average
sentence length, and the standard deviation of the sentence length for completeness.
RST Tree Features: These features were integrated to capture the rhetorical structure
of the text, such as the hierarchy of principal and subordinate clauses, the logical and
temporal relations between propositions, and the coherence of the argument. These
concepts have a high validity for scoring essays (Jiang et al., 2019), especially for
ORGANIZATION, so high alignment between functional groups would be expected.
To generate RST trees for each essay, we utilize a pretrained RST parser specifically
fine-tuned for student writing (Fiacco et al., 2022). We include the presence of an
RST relation as a feature as well as relation triplets (RELparent, RELchild1

, RELchild2
)

as tree-equivalent n-gram-like features.
Essay Prompt and Genre: Categorical representations of the essay prompt and genre
were employed as features to examine if components of the AES model were preferen-
tially activated based on the content or topic of the essay, a low validity feature.
Algorithmically Generated Word List Features: We calculate the frequency of usage
of words within algorithmically derived sets of words in the essays as a group of features
to probe the AES model’s consideration for stylistic language. To generate these word
lists, we obtain Brown clusters (Brown et al., 1992) from essays. We generate separate
Brown clusters for each prompt in our dataset and subsequently derive final word lists
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based on the overlaps of those clusters. This approach emphasizes common stylistic
features as opposed to content-based clusters.
Human Generated Word List Features: In addition to the algorithmically defined
word lists, we devise our own word lists that may reflect how the AES model scores
essays. We created word lists for the following categories: simple words, informal
language, formal language, literary terms, transition words, and words unique to African
American Vernacular English (AAVE).
Demographic Features: We used the percent to participants in the National School
Lunch Program (NSLP) at a school as a weak proxy for the economic status of a student.
Also as weak proxies for economic status of essay authors, we include the school level
features of number of students and student teacher ratio. Furthermore, we use a school
level distribution of ethnicity statistics as a weak proxy for the ethnic information of an
essay’s author. These features were employed to investigate the model’s perception of
any relationship between the writer’s background and the quality, content, and style of
the essay, in order to gain insight of the equity of the AES model.

Functional Group Extraction Important Functional Group Alignment

Model A Model B # Comp. A # Comp. B # FG # Aligned FG # A Only # B Only # Mixed

ORGANIZATION MAIN IDEA 119 55 125 22 12 0 10
ORGANIZATION LANGUAGE 96 66 110 29 11 0 18
ORGANIZATION SUPPORT 66 36 68 22 9 1 12
LANGUAGE MAIN IDEA 78 55 93 23 8 3 12
LANGUAGE SUPPORT 34 28 38 13 2 2 9
SUPPORT MAIN IDEA 45 49 64 25 2 2 21

Table 9: Comparing number of functional groups extracted for each model comparison
and presenting the number of functional groups that were both deemed important
(Section 5.3.2) and sufficiently aligned with at least one feature group. Also specified is
the number of functional groups that are unique to a particular model and the number
that are shared between the models of given a comparison pair.

5.4.5 Analysis Settings

To choose the number of components for ICA, a PCA was performed to determine
how many components explained 95% of the variance of the activation (or 99% of
the variance for the features) to be used as the number of components of the ICA. To
determine that a functional group was important, it needed to have an absolute value
of Pearson’s r value of greater than 0.2. This threshold was also used to determine if a
functional group should be considered aligned with a feature group.

5.4.6 Results

In this section, we present aggregate statistics for each model comparison when it comes
to computing features and independent feature groups (Table 8), extracting functional
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Figure 16: Alignment diagram for functional groups (left) that are specific to the
LANGUAGE model with their alignment to feature groups (right). Only functional
groups and feature groups are shown if they have a positive correlation greater than
0.25 (blue edges) or a negative correlation less than 0.25 (red edges). The numbers
correspond to the IDs of the functional group or feature group that the node represents
(see Table 10).

groups and aligning important functional groups (Table 9), and lastly, we provide
examples taken from the model comparison between the LANGUAGE model and the
MAIN IDEA model. Due to length constraints, we present detailed examples of this
comparison only. Similar figures and correlation statistics can can be found on Github2.
Independent Feature Groups: Since each trained model held out a different set of
prompts from its training set, common prompts between analysis sets needed to be
identified, and thus the number of features extracted and the resulting independent
feature groups vary between model comparisons. Computing the independent feature
groups for each model comparison (Table 8) yielded between 70% and 77% of the
original extracted features for all comparisons, except LANGUAGE V SUPPORT, which
only yielded 57% as many independent feature groups compared to original features.
Despite high variability in the number of independent feature groups identified during
the process, a much more narrow range of independent feature groups was aligned
during the analysis. The types of feature groups that were aligned varied considerably
between different comparisons.
Functional Component Groups: The initial extraction of functional components for
each model elicited numbers of functional components between 28 and 119. Table 8

2https://github.com/jfiacco/aes_neural_functional_groups/tree/main/
supplementary_results
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Figure 17: Alignment diagram for functional groups (left) that are specific to the MAIN
IDEA model with their alignment to feature groups (right). Only functional groups
and feature groups are shown if they have a positive correlation greater than 0.25 (blue
edges) or a negative correlation less than −0.25 (red edges). The numbers correspond to
the IDs of the functional group or feature group that the node represents (see Table 10).

and 9 show that for a given model, fewer functional components will be extracted given
a fewer instances in the analysis dataset. Despite this noise, a clear pattern emerges
where the ORGANIZATION model has the most functional components, followed by the
LANGUAGE model. The MAIN IDEA model has fewer functional components, with the
SUPPORT model having the fewest.

When performing the dimensionality reduction to compute the functional groups,
there is a consistent reduction to approximately 61-71% of the combined total functional
components.
Important Functional Groups: Despite the variance in the number of feature groups
and functional groups extracted per comparison, there is a remarkably consistent number
of important functional groups that have at least one sufficient alignment to a feature
group (Table 9). With the exception of the LANGUAGE V SUPPORT comparison, all
other comparisons had between 21 and 29 aligned functional groups.

As a visual aid for the important functional groups, see the left sides of Figures 17
and 18. Each Figure is derived from the functional groups and feature groups of the
LANGUAGE V MAIN IDEA comparison. The numbers on each node are the identifiers
of a given functional group, a subset of which are represented in Table 10.
Alignment of Functional Groups: The entirety of findings from the alignments for
all of the comparisons would be too numerous to present in a conference paper format.
However, we will present the major trends we found in our analysis. The first main trend
is that all models had functional groups that we correlated with the statistical features of
the essay. Furthermore, by computing the correlations between the individual features
within that type, it was determined that number of paragraphs is likely the most salient
contributor.

The second set of trends is presented in Table 11, where the percent of the total
aligned feature groups per model was computed. This revealed that the ORGANIZA-
TION model had considerably more aligned RST-based features than the other models,
while the MAIN IDEA model had the least proportion. The LANGUAGE model had the
most aligned word list features, which is the combination of the algorithmically and
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Figure 18: Alignment diagram for functional groups (left) that are common to both
the LANGUAGE and MAIN IDEA models with their alignment to feature groups (right).
Only functional groups and feature groups are shown if they have a positive correlation
greater than 0.25 (blue edges) or a negative correlation less than −0.25 (red edges). The
numbers correspond to the IDs of the functional group or feature group that the node
represents (see Table 10).
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Functional Group 46
Diff:LANGUAGEVSMAINIDEA r = −0.39(p < 0.001)

Independent Feature Group 1 r = −0.43(p < 0.001)

ModelErrors:MAINIDEA(+), ModelPairDifference(+), Mod-
elErrors:LANGUAGE(-)

Functional Group 56
Predictions:MAINIDEA r = −0.13(p < 0.05)

Independent Feature Group 21 r = 0.75(p < 0.001)

EssayStats:STDDEVSENTENCELENGTH(+), Es-
sayStats:NUMSENTENCES(+), EssayStats: MEAN-
WORDLENGTH(+), EssayStats:NUMWORDS (-), Es-
sayStats:NUMPARAGRAPHS(-), EssayStats: MEANSEN-
TENCELENGTH(-)

Functional Group 92
Predictions:LANGUAGE r = −0.13(p < 0.05)

Independent Feature Group 12 r = −0.20(p < 0.001)

WordCluster:PRIORITIES(+), WordClus-
ter:POPULATIONCOMPARISION(+), WordClus-
ter:EFFICIENCY(+), WordCluster:TEENVALUES(-),
WordCluster:STORYTELLING(-), WordCluster:SCHOOL

(-), WordCluster:PARENTALDECISIONS(-), WordClus-
ter:INFORMAL(-), WordCluster:HISTORICALCONFLICT(-)

Independent Feature Group 69 r = 0.22(p < 0.001)

RST:NN—CONTRAST(+),
RST:SN—EVALUATION(NS—ELABORATION, LEAF)(+),
RST:SN—BACKGROUND(LEAF, NS—ELABORATION)(+),
RST:NS—EVIDENCE(LEAF, NN—CONJUNCTION)(+),
RST:NN—JOINT(NN—CONJUNCTION, NN—JOINT)(+),
RST:NN—CONTRAST(LEAF, LEAF)(+),
RST:NN—CONJUNCTION(NS—ELABORATION,
NN—CONJUNCTION)(+),
RST:SN—EVALUATION(NN—CONJUNCTION, LEAF)(-),
RST:NN—CONJUNCTION(LEAF, LEAF)(-)

Table 10: Selected examples of correlated functional group/feature groups. Pearson’s R
values for relevant importance metric (model difference, model predictions) and feature
group alignment are presented with p-values.

human-created word list features. For the last percentage, we combine the prompt and
demographic features and find that the SUPPORT model tended to align with fewer of
these types of features. The reason for combining the demographic and prompt features
is discussed in Section 5.4.7.
Qualitative Analysis: While the method that we presented can quickly advance one’s

70



%Word %Demo. &
Model %RST List Prompt

ORGANIZATION 41 13 21
LANGUAGE 30 26 19
SUPPORT 36 19 13
MAIN IDEA 23 21 23

Table 11: % of aligned feature groups for a given model by feature type.

understanding of a model from the black-box neural network to aligned feature groups
directly, understanding what function a feature group represents can be more difficult. It
is thus necessary to resolve what a feature group represents to form a strong statement
on what the model is doing. For instance, we found it concerning that so many of
the models were connected with feature groups that contained demographic features
(colored red in Figures 17 and 18). However, a qualitative look at the datasets for which
prompts were included, we found that the distribution of prompts over the different
schools, when controlling for essay length, were such that certain schools (with their
demographic features) were the only source of certain prompts. It, therefore, becomes
likely that many of these feature groups are more topic-based rather than the potentially
more problematic demographic-based. This interpretation was reinforced by many of the
feature groups with demographic information also including prompts (e.g. “Independent
Feature Group 29” from Table 10) and by examining essays that present those feature
groups.

5.4.7 Discussion

The results presented in the preceding section demonstrate the efficacy of the proposed
method in extracting salient feature groups and functional groups from the neural
models, particularly when applied to the dataset under consideration. The true potential
of this method, however, lies in its capacity to be broadly applied to any neural AES
system, thereby facilitating a deeper understanding of the models and the underlying
processes they employ. In the following discussion, we will delve further into the results,
emphasizing the prominent trends observed in the alignment of functional groups and
their correlation with essay features, as well as the implications of these findings for
enhancing the interpretability and transparency of neural AES systems.
Functional Component and Feature Groups: The proposed method successfully
extracted meaningful functional groups from the analyzed neural models. Notably, the
LANGUAGE V SUPPORT comparison emerged as an outlier in several of our analyses.
This discrepancy is likely attributable to the considerably fewer essays shared by both
models’ analysis sets, which may result in a noisier analysis and expose a limitation of
the method. As the size of the analysis increases, one would expect the extraction of
feature groups and function groups to approach their ideal independence characteristics.
Despite this limitation, the method managed to condense the analysis space from
thousands of activations to fewer than 125 while still accounting for over 90% of the
model’s variance.
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Interestingly, the ORGANIZATION model exhibited the highest number of functional
groups. This observation suggests that capturing the ORGANIZATION trait is a more
intricate process, necessitating the learning of additional features. This notion is further
corroborated by the comparisons between ORGANIZATION and other models; models
which displayed very few, if any, functional groups exclusively present in the non-
organization models.
Alignment of Important Functional Groups: In line with our expectations, the
ORGANIZATION model demonstrated the greatest alignment with the RST tree features,
while the LANGUAGE model displayed the most significant alignment with the word
list features. It was postulated that ORGANIZATION would necessitate the model to
possess knowledge of how ideas within essays are structured in relation to each other,
a type of knowledge encoded by rhetorical structure theory. Although the RST parse
trees recovered from the parser are considerably noisy (RST parsing of student essay
data has been shown to be markedly more challenging than standard datasets (Fiacco
et al., 2022)), the signal remained significant. Furthermore, we anticipated that the
LANGUAGE model would have a greater reliance on word choice, a concept mirrored by
the word list-based feature groups.

Contrary to our expectations, the MAIN IDEA model exhibited the highest number
of prompt-based feature groups. Our most plausible explanation for this observation is
that certain prompts might have clearer expectations for thesis statements than others, a
notion generally supported by a qualitative examination of the essays from prompts that
score higher on MAIN IDEA.

5.4.8 Conclusion

The neural network interpretation technique presented in this paper demonstrates sig-
nificant promise in learning the implicit rubrics of neural automated essay scoring
models. By effectively mapping the intricate relationships between feature groups and
the functional groups of the underlying scoring mechanism, the technique provides a
step towards an understanding of the factors contributing to a transformer’s evaluation
of essay quality. This enhanced understanding enables researchers and educators to not
only identify potential biases in scoring models, but also to refine their models to ensure
a more reliable and fair assessment of student performance.

The code for this method will be released and incorporated into an analysis tool
for application to neural models not limited to the ones examined in this work with the
goal to pave the way for the development of more transparency in neural AES models.
These advancements can contribute to the overarching goal of promoting ethical and
responsible AI in education by facilitating the examination and comprehension of
complex neural models.
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6 Applying Neural Pathways to Real-world Tasks and
Datasets

In the next three chapters, we leverage the neural pathways approach from Fiacco
et al. (2019a) to guide advances in three natural language processing tasks: automatic
transactivity detection (Joshi and Rosé, 2007), rhetorical structure parsing (Mann and
Thompson, 1988), and AI writing detection (Solaiman et al., 2019; Yan et al., 2023).
Each of these tasks provide an important feature for evaluating how the neural pathways
approach can be applied to tasks and dataset beyond the synthetic tasks and data that we
have previously covered.

The automatic transactivity detection task makes use of transfer learning to leverage
model learning done on a large, well studied dataset on a much smaller dataset. The
similarities between the pretraining task and the automatic transactivity detection task
allow the model to adapt the functions that it learned to the new domain. This provides a
good test bed for the neural pathways approach as we can probe the commonalities and
differences between the models before and after the transfer learning has been applied.
We can thus make model design decisions that can make the most out of the transferred
learning while covering gaps of previous iterations of the models.

In a similar vein, we can use the neural pathways approach to understand models
designed to perform rhetorical structure parsing such that we can choose improvements
that directly address existing models’ shortcomings. This is particularly useful for
rhetorical structure parsing for student writing where the goal is not only to study how
students construct essays, but also to provide automatic feedback. Providing feedback
requires knowing where disjoint structures occur, but can be augmented should one be
able to know why the mistake was made.

Lastly, we chose to explore the identification of pathways within AI writing detection
models as our final task, recognizing its significance in the current landscape. While our
focus is primarily on understanding what the neural model is learning, we framed our
investigation such that its methods and insights may be applicable and interesting bias
and fairness in neural networks community. However, it’s crucial to mention that our
study does not directly evaluate the bias or fairness of the these models.

In the remainder of this chapter, we provide the foundational knowledge for each
of these tasks along with the reasons why they are instrumental in demonstrating the
capabilities of the neural pathways approach. The following three chapters go into much
greater detail about the experiments performed with their respective tasks.

6.1 Transferable Pathways for Automatic Transactivity Detection
The concept that transfer learning is able to carry over knowledge learned from one
task to another provides an excellent test-bed for examining neural pathways. It stands
to reason that if knowledge is being transferred from a model trained on a pretraining
task to a post training task there should be overlapping neural pathways insofar as
there is overlapping knowledge requirements for the task. We hypothesize that this
overlap will be detectable and that knowing what information transfers can lead to better
decisions for choosing pretraining tasks and architectures that can carry forward the
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desired information.

6.1.1 Transactivity

The concept of Transactivity originally grows out of a Piagetian theory of learning where
this conversational behavior is said to reflect a balance of perceived power within an
interaction (Berkowitz and Gibbs, 1983; De Lisi and Golbeck, 1999). It is a property of
discourse in an educational context that is associated with interactions that are beneficial
for learning (Azmitia and Montgomery, 1993), and thus it has been of great interest
within the learning sciences in the area of discussion based learning.

Transactive contributions demonstrate consideration of the earlier expressed ideas.
Thus, it makes sense that recent work has demonstrated that automated models for
Transactivity detection can be used as a foundation for highly effective assignment
of students to project teams in MOOCs by estimating the collaborative potential of
pairs of participants based on the exchange of Transactive contributions (Wen et al., in
press). Even before this recent work, there was much interest in automated detection
of transactivity in educational applications (Joshi and Rosé, 2007; Rosé et al., 2008;
McLaren et al., 2007; Ai et al., 2010; Gweon et al., 2013). However, where there are
reported successes, past work has failed to produce models that generalize well to new
domains (Mu et al., 2012), which we address in this work.

A Transactive contribution to a discourse must meet two requirements(Gweon
et al., 2013). First it must display reasoning, in other words revealing how a speaker
thinks something works, which can be accomplished through an expressed evaluation,
comparison, or reference to a causal mechanism. For example, ”Use of coal increases
pollution” displays a causal mechanism and ”Use of wind power may not be reliable
throughout the year” expresses an evaluation. But something like ”I prefer coal power”
does not express reasoning. A Piagetian perspective on learning would suggest that
students display their reasoning more when they are in a safe environment where they
feel their ideas are valued and respected (De Lisi and Golbeck, 1999; Azmitia and
Montgomery, 1993).

The second requirement for a Transactive contribution is that it references and idea
expressed earlier in a discourse. Students reference the ideas of another student when
they are listening to that student. It is a sign that the student takes the other student
seriously enough to consider their ideas and how their respective ideas relate to one
another (De Lisi and Golbeck, 1999; Azmitia and Montgomery, 1993). If earlier a
speaker said, ”Wind is my choice because it is sustainable”, a Transactive reply would
be ”Wind is sustainable, but it fails to be reliable throughout the year”. On the other
hand, ”Use of coal is cheap and reliable” would not be a Transactive reply. In one case,
the speaker shows consideration of another student’s ideas, while in the second case
we do not see this consideration. From our technical perspective, an important aspect
of the operationalization that we leverage in the work reported in this chapter is the
idea relatedness of the Transactive contribution and the earlier contribution it refers
transactively to.
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6.1.2 Transfer Learning

Transfer learning, the process of transitioning learning from one task to another, has
long been studied in the context of reinforcement learning and robotics (Taylor and
Stone, 2009), but has more recently began have strong influences in other domains (Pan
and Yang, 2010). In natural language processing, transfer learning has been shown
to support a variety of basic tasks including chunking, named entity recognition, and
semantic role labeling (Collobert et al., 2011; Peng et al., 2017; Peters et al., 2017).
More recently, deep learning models in the paradigm of sequence-to-sequence modeling
have been shown to be able to leverage multi-task learning (Luong et al., 2015; Yang
et al., 2017). Many of these multi-task transfers have both the initial task and the transfer
task made use of very large datasets. Here we approach a transfer task in two domains
where there is not a very large corpus in either domain.

6.1.3 Entailment as a Pretraining Task

In our work, we use the Entailment task as the more fundamental task that forms a
foundation for Transactivity detection. The Entailment task, specifically, comprises
of deciding whether the concepts presented in one text can be determined to be true
given some context or premise given in a different text (Condoravdi et al., 2003). For
example, if an object is a shoe, then we can assume it was made to be worn on the foot.
Therefore, shoe entails made to be worn on the foot. Because the task requires inferring
abstract connections between ideas within two snippets of text, we considered it a good
candidate for transferring learning to more specific applied discourse tasks where it is
important to identify forms of idea relatedness, such as Transactivity.

One text entails another text if there is a conceptual link via an inference that
associates those two texts. Similarly, a Transactive contribution to a discussion is one
that displays reasoning and uses that reasoning display to evaluate, extend, transform,
or refer substantively to an assertion made earlier in the discourse. The simple way
of thinking about what constitutes a reasoning display is that it has to communicate
an expression of some causal mechanism or express an evaluation or comparison.
Transactive contributions are reasoning displays where the contribution either explicitly
refers linguistically in some way to a prior statement, such as through the use of a
pronoun or deictic expression, or implicitly by referring to a related idea. Thus, both
Transactivity detection and entailment detection share the notion of concepts linked via
inference.

What makes detection of Transactivity challenging in a domain general way is
identification of the relevant conceptual links between ideas related by inference. Instead,
using state-of-the-art approaches to Transactivity detection, such as linear Support Vector
Machine models with n-gram features (Rosé et al., 2008) is that rather than learn the
general task of identifying idea relatedness, the models tend to learn which concepts in
the training domain are related to one another, and to identify them from their associated
words. Thus, the learned associations are not useful anymore in a different domains
since the set of related concepts that are relevant in the new domain will be different.
Our work is based on the premise that networks trained to perform the Entailment task
may need to learn internal text encoding representations that enable measurement of
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”closeness by inference” rather than ”closeness in meaning”, in other words identification
of abstract connections between expressed ideas. Since Transactive contributions build
on or evaluate assertions made earlier in a discourse, the sub-problem of detecting idea
relatedness is a foundational task. Note that the concept of idea relatedness used here
as in the operationalization of Transactivity goes beyond text similarity. The idea is
not that the two concepts are rephrases of one another, but that they are related to one
another through some inference.

6.2 Discourse Parsing
Discourse parsing, more specifically discourse parsing with Rhetorical Structure Theory
(RST), allows us to examine models that operate over a well defined hierarchical
structure. Furthermore, unlike syntactic parsing, the elementary unit of the tree structures
in RST is not only a word, but a sentence that contains potentially complex meaning on
its own. This allows us to use neural pathways to examine both the neural parser state at
various parsing decisions, but also at the representation for the units of discourse that it
develops to facilitate the parsing.

6.2.1 Rhetorical Structure Theory

Rhetorical Structure Theory decomposes a document into basic units of analysis called
elementary discourse units (EDU) that can be combined through rhetorical relations
between units into larger composite units (Mann and Thompson, 1988). Thus, the
rhetorical relations combine to build a hierarchical tree structure that represents the
overall structure of the document (Figure 19a). Each relation has one (mononuclear)
or more (multinuclear) nuclei where a nucleus is an essential span which, if deleted,
would leave the remaining text incoherent. Mononuclear relations have satellites that
are related to the nucleus by means of a rhetorical relation. They play a supporting
role, and are therefore not necessary for coherence of the document. Each node of the
tree represents a relation tuple ⟨S,N,R⟩ where S is the span, N is the direction of
nuclearity, and R is the relation label. This is more readily seen in Figure 19b which
depicts an alternate representation of the RST tree structure.

RST has a long history (Mann and Thompson, 1988), and its original formulation
continues to be treated as authoritative. However, for some types of writing, especially
student writing, additional and combined relations have been proposed in order to bring
the set of used relations in line with the writing practices that are applicable to the
corpus (Jiang et al., 2019).

6.2.2 Parsing Rhetorical Structures for Automatic Essay Feedback

Datasets for RST are time consuming to annotate and require high degrees of expertise
to achieve reliability (Jiang et al., 2019). Available public corpora of data with RST
annotations are small relative to the magnitude of annotated data available for training
syntactic parsers. Considering both the dearth of annotated data and the challenges of
decision making for discourse relations based on local context, it is not surprising that
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RST parsing has remained a challenging task that has had only incremental improve-
ments even since the deep learning revolution (Li et al., 2014; Ji and Eisenstein, 2014;
Li et al., 2016; Braud et al., 2017; Yu et al., 2018; Mabona et al., 2019).

6.3 AI Writing Detection
Large Language Models (LLMs) have gained unprecedented prominence in a diverse
range of Natural Language Processing (NLP) tasks, from creative text generation to
sophisticated question answering (Christiano et al., 2017; Elkins and Chun, 2020;
Stiennon et al., 2020; Lu et al., 2022; Ouyang et al., 2022; Guo et al., 2023; Huang and
Tan, 2023). Yet, as reliance on these LLMs burgeons, so does apprehension over the
biases inherent in these models. The community acknowledges that pretrained models
are heavily influenced by their training data, inherently absorbing biases (Bommasani
et al., 2021; Talboy and Fuller, 2023; Venkit et al., 2023) and a quickly growing body of
research is aimed at mitigating these effects (Saleiro et al., 2018; Barikeri et al., 2021;
Lin et al., 2021; Lee et al., 2023; Ungless et al., 2022; Thakur et al., 2023). However,
there is a lack of understanding about the specific patterns within the ubiquitous process
of fine-tuning that give rise to these biases.

Furthermore, as the proficiency and ubiquity of LLMs advance, there emerges a
pressing need for effective AI detection tools and datasets to train them. The transforma-
tive potential of LLMs has led to their expanding use in automated content generation
and essay writing (Fuchs, 2023; Sharples, 2022; Yeadon et al., 2023). As a result,
differentiating between human and AI-generated content has become a crucial research
frontier (Solaiman et al., 2019; Yan et al., 2023).

Detection of AI-generated writing is rapidly becoming a more difficult task as
improvements in text-generation make leaps and bounds of progress (Ippolito et al.,
2020; Clark et al., 2021). The development of AI-writing detection techniques is
thus a growing area of research with two primary approaches: deep learning and
neural network based approaches (Solaiman et al., 2019; Adelani et al., 2020; Uchendu
et al., 2020) which can work exceptionally well, though are inherently black-boxes
leading to instances where the model can fail catastrophically for potentially unforeseen
reasons (Solaiman et al., 2019); and statistical and feature-based approaches (Fröhling
and Zubiaga, 2021; Gallé et al., 2021) which intend to overcome the black-box limitation
of deep learning based approaches by using inherently more interpretable methods. This
paper focuses on deep learning based AI-writing detection models as they are currently
the most effective style of AI-detection system (Jawahar et al., 2020) and highly flexible
in their trainability. This means they are highly relevant to the community and have a
high capacity for future research to adapt to the findings of this work.

This area of research is quickly evolving, and the background presented in this
chapter is only a brief snapshot of the work that is ongoing in the field.

6.4 Fairness in Neural Models
While the prominence of neural networks has exponentially grown across diverse
domains, impacting even policy decisions, the imperative for these models to make
fair predictions is undeniable. We interpret fairness as ensuring consistent expected
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outcomes across varied populations, devoid of influences from sensitive attributes such
as race, gender, or socio-economic status.

Our engagement in the AI Writing detection task has allowed us to explore themes
connected to fairness in neural models. However, it is crucial to clarify that, within this
scope, our intention is not to make direct contributions to the broader discourse on bias
and fairness evaluation methodologies. Our objective is more nuanced, focused on the
intersections between our research, that is understanding what functions a model uses to
perform a task, and the identified gaps in fairness literature.

In interviews with machine learning practitioners, Holstein et al. (2019) found
five general gaps in the research being done for fairness in machine learning. First,
the literature focused on ”de-biasing” when interviewees indicated that they would
prefer more work towards curating datasets that will more naturally yield more fair
models. Second, practitioners wanted to see resources, metrics, processes, and tools that
can be domain-specific as the very definition of fairness can change between contexts
and applications. Third, they found that many fairness auditing techniques required
individual-level demographic information despite that type of information often being
unavailable to the practitioners. Their penultimate finding was that there was a dearth
of tools for fairness-focused debugging of machine learning models. Lastly, there
was a great desire for prototyping tools for evaluating potential fairness issues prior to
deployment.

These findings were further corroborated by a later interview study conducted by
Law et al. (2020) on professional modelers at a large technology firm. Specifically,
in addition to the general finding that the professionals expressed concern at how
performance between demographic groups could be considerably different, there was
expression of a great need for conducting fairness audits without individual-level access
to demographic information that is either unobtainable, unreliable, or a cause for privacy
concerns. The interviewees further commented on the difficulty of foreseeing bias
within models and then a difficulty in formulating the caveats that apply to the models.
The last theme of the responses centered around the difficulty in understanding the root
causes of the biases in to both resolve the bias and to communicate what the bias is to
stakeholders.

While it would be exceptionally difficult to attempt to address all of the issues
raised in these studies, there are some overlaps between the two studies that the neural
pathways approach can provide some insight. Specifically, we view that neural pathways
can join and augment other fairness auditing frameworks to allow for debugging neural
models with respect to fairness and illuminate the causes of the biases within a model.

In the remainder of this section we review other fairness auditing frameworks and
provide background on the types of discrimination that serves as the target of our use of
neural pathways.

6.4.1 Discrimination

There are many types of discrimination and there is a deep body of literature on discrim-
ination theory (Marshall, 1974; Romei and Ruggieri, 2014; Willborn, 1984). However,
for purposes of fairness in deep learning, it is possible to generalize the categories of
discrimination to (1) Explainable Discrimination and the two subtypes of unexplainable
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discrimination: (2) direct discrimination and (3) indirect discrimination (Mehrabi et al.,
2021). In this chapter we focus on distinguishing between explainable discrimination,
an apparent discriminatory outcome that can be explained by non-sensitive attributes
(e.g. a difference in wages in a population of men and women that can be explained by
a difference in hours worked between the two groups) (Kamiran and Žliobaitė, 2013),
and indirect discrimination, a discriminatory outcome wherein an apparently neutral
treatment becomes discriminatory based on interactions between sensitive attributes and
treatment (e.g. the use of ZIP code to determine credit worthiness, as ZIP codes can
correlate with ethnicity in residential areas) (Rice, 1996).

Treating a model as a black box for purposes of fairness makes it difficult if not
impossible to distinguish between explainable discrimination, which is considered legal
and acceptable (Kamiran and Žliobaitė, 2013), and indirect discrimination, which is
considered a unjustified and illegal (Kamiran and Žliobaitė, 2013), as the difference
between the two is dependent on what attributes a model is using to make its decision.
We propose that our work on neural pathways can provide a way to differentiate between
these forms of discrimination in existing trained neural models to provide researchers
the information required to make fair modeling decisions.
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7 Utilizing High Salience Neural Pathways to Improve
Generalizability of RST Parsing on Student Writing

Neural models, in innumerable studies, exhibit a tendency to overfit to features that
are unique to their training dataset, resulting in models that may not perform well on
unseen, varied data. In more specific terms, overfitting to dataset-specific features refers
to the model’s inclination to learn intricate details, patterns, and noise from the training
data that do not generalize well to new, unseen data, compromising the model’s ability
to perform the desired task in diverse real-world scenarios (Caruana et al., 2000). This
is predominantly attributed to the high-dimensional and highly flexible nature of neural
models, which, while enabling them to learn complex representations, also makes them
susceptible to fitting to the peculiarities and idiosyncrasies of the training data while
overwriting the heuristics that may be more beneficial to the general task.

Results from Caruana et al. (2000) paint a picture of overfitting in large models as
a heterogeneous process that affects various regions of the neural network differently,
describing a landscape of regions within the neural model, some of which correspond
to generalizazble features and others corresponds to dataset artifacts. This property is
exploited in early-stopping during training of neural networks by freezing the network
when the neural model exhibits the maximum generalizable behavior. Through the use of
neural pathways, we seek to exploit the generalizable regions of a neural model further
by identifying which components of a model are aligned with the features essential
for performing the task, freezing those components, then performing another round of
learning to encourage the model to learn another set of generalizable features.

In this chapter, we demonstrate the ability of neural pathways to isolate the clusters
of neurons that are responsible for the more general functions of a task, and inject them
into a secondary model to improve the generalizability of the model. Specifically, our
focus is on a neural transition parser designed for the task of discourse parsing, which
is a complex yet important task that has applications in several NLP areas including
text categorization, authorship attribution, and automated essay feedback (Feng and
Hirst, 2014b; Ji and Smith, 2017; Jiang et al., 2019). We use the Rhetorical Structure
Theory (RST) to represent discourse structures (Mann and Thompson, 1988), a widely
recognized theory in the field of Computational Linguistics.

Our approach to improving model design is twofold. First, we perform a pathways
analysis on a baseline RST parser to understand what kinds of information the model
is using for its decision-making and assess how effectively it is doing so. Based on
this analysis, we then augment the model to address its identified weaknesses. Second,
we extract general structures from a pre-trained transition parser and construct a new
version that uses these general structures for better adaptability to different datasets.
We apply these techniques in the context of RST parsing for the purpose of enhancing
Automatic Essay Feedback mechanisms.

7.1 Parsing Rhetorical Structures with Neural Models
For neural architectures applied to RST, neural transition based parsers have been
making headway (Yu et al., 2018; Mabona et al., 2019), however, at their core, transition
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Figure 19: Example RST tree fragment with nuclearity and relations. a) The traditional
depiction of an RST tree structure. b) The RST tree form corresponding to the labeled
attachment decisions of (a).

parsers make parsing decisions locally. While many of these use recurrent models
to construct their stacks and buffers, in practice, recurrent models have been shown
to primarily to use very near context (Khandelwal et al., 2018). This is a limitation
for discourse parsing where knowledge about the document as a whole may provide
essential context for judging relations.

7.1.1 RST Datasets

The English RST Discourse Treebank includes 385 articles from the Wall Street Journal
(Carlson et al., 2003). These articles represent approximately 180,000 words of texts
and cover a wide range of topics, such as finance and arts. These articles were created
by professional writers, thus, it is the most frequently used data set for well-written,
copy-edited sentences (Palmer et al., 2010).

The student writing corpus, which was provided by Turnitin, and annotated and made
public by Jiang et al. (2019), includes 274 essays from students’ responses to standards-
aligned (Valencia and Wixson, 2001) formative writing tasks (West-Smith et al., 2018a).
These tasks cover a range of genres, including literary analysis, argumentative, historical
analysis, and informative writing. As an example of a writing task, students write an
essay to the head of the school board to argue whether sports are more helpful or harmful
to young people. These essays represent a diverse set of secondary classrooms across
the United States, representing a broad range of writing skills and student backgrounds.
We separate out 25 documents for a development set and reserve 28 documents as a test
set.
Comparison of Datasets: In addition to errors related to grammar, spelling, and usage,
common patterns in less proficient students’ writing could make the modeling task on
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our selected second corpus featuring student writing more challenging than with the
relatively clean RST-DT dataset. Common practices in the corpus include (1) sentences
lacking transition words, such as words to express contrasts (e.g., however), or transition
words used inappropriately; (2) pronouns exhibiting reference ambiguity; (3) paragraphs
where the topic sentence is not clearly indicated, or where there are multiple main
ideas (and sometimes contradictory ideas) in one paragraph or across paragraphs; (4)
sentences not presented in a logical progression. These areas of focus for developing
writers are also highlighted in the literature (de Jong and Harper, 2005). Ambiguous
and weakly structured essays may indicate an opportunity for automated feedback, but
they also pose challenges for the parsing task.

The use of the JOINT relation captures some of the difference between RST-DT and
the Turnitin essays. JOINT, as defined by Jiang et al. (2019), indicates a lack of rhetorical
relations between nuclei. It indicates that there is no relation that could describe the
connection between sentences. In newspaper articles, this lack of connection is very
rare, however, in student essays the lack of coherent rhetorical relations is common
because of the high variability in writing ability among authors.

7.2 Neural Transition Parsing Model
Transition parsers are common among state-of-the-art models for discourse parsing with
RST in the past several years. Their power lies in their ability to make strong local
decisions about the next action the parser must take given an embedding that, because of
recurrent neural models, has the capacity to contain features from the whole document.
However, recurrent neural networks often do not in practice retain sufficient context for
long range dependencies (Bahdanau et al., 2014; Khandelwal et al., 2018). We address
this by providing an additional embedding for the predicted most nuclear sentence of the
document to provide a reference point for the parsing decisions. Furthermore, inspired
by neural interpretation techniques, we further augment the model with a two stage
parsing approach that allows the second stage of the model to learn from mistakes made
by the first.

The model presented in this work is based on the parser presented in Yu et al. (2018).
For the benefit of the reader this subsection provides an overview of that model, however,
for a full mechanical description see their paper. Our augmentations of the model follow
in Sections 7.3.1 and 7.3.2.

The model constructs a neural representation that is used to decide whether to make
a SHIFT or REDUCE action analogous to those in a simple LR-parser (Knuth, 1965).
Furthermore, the model maintains a neural analogue to a stack and buffer to track
progress through the parse, which is illustrated in the unshaded regions of Figure 20.
EDU Embedding: Each sentence in the document is embedded using a BiLSTM
over word embeddings for each word in the EDU. The final states of the forward and
backward LSTMs are used as the EDU representation.
Dependency Parse Embedding: In addition to the embedding generated by the BiL-
STM, an embedding of syntactic information was included (Braud et al., 2017; Mabona
et al., 2019). The information was integrated via concatenating the produced arc em-
bedding from the dependency parse obtained from the parser described in Dozat and
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Figure 20: Diagram of neural transition parser model architecture for RST parsing
augmented with our changes (shaded purple and green). The parent parser state (purple)
has the same basic architecture as the rest of the diagram with the exception of having
another parent parser state component. The dotted line from EDU Embedding to Most
Nuclear EDU Embedding (green) indicates choice made by the model for which EDU
to use.
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Manning (2017) with the output from the BiLSTM above.
Buffer: The buffer is an LSTM that inputs each EDU embedding from the end of the
document to the beginning. Each state is stored in memory such that it can be accessed
sequentially as items are removed from the buffer. Each state of the buffer is therefore
an aggregate representation of all of the EDUs from the current EDU to the end of the
document.
Stack: The stack is a Stack LSTM (Swayamdipta et al., 2016). The stack state is
updated via the result of an MLP given the two stacks states popped off the stack during
a REDUCE action procedure. If an item is popped off the stack, the stack state is
updated to the output state of the LSTM of the previous cell.
Action and Relation Prediction: At each time-step the parser either predicts a SHIFT
action or one of the many REDUCE actions. Each REDUCE action has an associated
relation label and predicting the correct REDUCE action amounts to choosing the cor-
rect relation for the current subtree. The prediction is made by a multi-layer perceptron
(MLP) that is provided a concatenation of the EDU embedding, the current neural state
of the buffer, the current neural state of the stack, and additional neural representations
that will be described in depth in Sections 7.3.1 and 7.3.2. The input layer to the MLP
will be referred to as the parser state at a given time. For each action, a deterministic
procedure is executed in line with the transition parsing paradigm. In the case where
there is only one possible action, the model is forced to use that action without choice.

7.3 Augmentations to the Baseline
We propose two improvements to the neural transition parser paradigm that can provide
better performance and utilize limited data more efficiently:

1. By adding a co-task of predicting the most nuclear unit of the RST tree, we
can increase the model’s performance with the intuition that it may incentivize
the model to maintain a broader document context that it can use for predicting
individual tree spans and nuclearity.

2. By selectively introducing parser states from a previously trained parser into a
new model during training, we can guide the training of the new model towards
better performance on noisy datasets.

The first improvement builds on the general concept of multitask learning in
NLP (Bingel and Søgaard, 2017; Peng et al., 2017) and the intuition that a topic-like
sentence, as a common key component in many writing assessments and rubrics (Aull,
2015), may provide important contextual information to aid local parser decision-
making. The second improvement builds on an intuition provided by a neural network
interpretation technique that suggests a potential for neural component reuse.

We evaluate our model on both the standard English RST Discourse Treebank
(RST-DT) (Carlson et al., 2003) and a more recently introduced RST dataset that
comprises student essays (Jiang et al., 2019). The second dataset was created for use
as development data for automatic essay feedback where the RST structure can signal
places where the structure and flow of student writing might need improvement.
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7.3.1 Most Nuclear EDU Embedding

To provide the model a reference for making parsing decisions for a given document,
we include in the parser state an EDU embedding of the predicted most nuclear EDU.
Formally, we consider the most nuclear EDU the leaf node of the RST tree that is
reached when, starting at the root node, one follows the direction of nuclearity at each
branch. For multinuclear nodes, we arbitrarily take the left branch. In Figure 19, the
most nuclear EDU would be “The coyote is building an elaborate trap.”

The most nuclear EDU SNUC is selected by the model by choosing the EDU with
the maximum score computed by an MLP given the EDU embedding and choosing the
highest scoring sentence. This can be formalized as:

SNUC = argmax
s∈S

W · s

Where S is a set of all of the sentence EDU computed by the neural transition parser.
The most nuclear EDU embedding is constructed via a BiLSTM in much the same

manner as the EDU embeddings in the neural transition parser. This BiLSTM has its
own set of learned parameters, though it uses shared word embeddings as those used for
the EDU embeddings.

Because there is only one predicted most nuclear EDU for a document, the effective
training samples for this embedding is equal to the number of documents in the training
set rather than the number of EDUs. Because of this, it is necessary to restrict the size of
the embedding to prevent overfitting. Furthermore, the error from the RST parsing task
cannot backpropagate to W through the argmax so we include a separate error signal
for predicting the correct most nuclear EDU. The most nuclear EDU of a document can
be trivially obtained from the gold trees.

7.3.2 Parent Parser State

From prior work using neural pathways for the NER task, we found some evidence
that neural models may be learning general heuristics and memorizing exceptions to
those heuristics that increase performance on a given task. Assuming this is the case, we
attempt to exploit this behavior to offload some of the complexity of learning the RST
discourse parsing task into multiple phases of training. A fully trained parent model,
which includes all of the features in Sections 7.2 and 7.3.1, is executed concurrently to
the child model and a subset of the parser state of the parent model is concatenated with
the parser state of the child model.

The parser state for the parent model is updated along with the child model using the
action chosen by the child model, though with its own stack and buffer representations.
This ensures that even if the parent and child models diverge in their predicted actions,
the parser states are consistent. Maintaining this consistency is important for the neural
transition parser as the representation of the stack can contain a representation of a
larger segment of the document than just a single EDU.
Neuron Selection via Pathways: To improve the generalizability of the model on noisy
data, we prune the parser state from the parent model to only use the dimensions of the
state that correspond to the neurons that are part of the neural pathways that explain the
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most variance of the model. The intuition for this pruning is that the groups of neurons
that explain the largest amount of variance in the model will regularize the model via
eliminating overfitted parameters.

These neurons are obtained by extracting the parser state for each training instance
and constructing an activation matrix with the dimensions of the parser state as columns
and the training instances as rows. A PCA is performed over the matrix, and the subset
of resulting factors that cumulatively explain more than a tunable threshold of the
variance are chosen as the subset of pathways of interest. For each selected factor,
the factor loadings of each neuron are computed and the N neurons with the highest
loadings are added to the set of neurons to be transferred. The value of N can be tuned
by optimizing performance on a validation set.

7.3.3 Training

There are three phases to the training of the model: parent model training, neuron
selection, and child model training. The procedure for training the parent and child
models are identical except for the usage of the parent neurons as features for the child
model. The neuron selection phase is only applicable for the noisier Turnitin data and is
described in Section 7.3.2.

There are three objectives that are optimized using negative log likelihood loss
during the model training. The first training objective (Lm) is predicting the most
nuclear EDU at the document level (Section 7.3.1). The second objective (Ln), at the
action level, is to predict the nuclearity of each relation given the parser state. This
objective affects how the model composes the embeddings when combining via a
REDUCE action. The final training objective, (La), is to choose the correct action given
the parser state. We do not fine tune the embedding from the dependency parser during
training. The third phase of training follows the same procedure as the first phase with
selected neurons from the parent parser state included. The final loss for a document is
described as:

L = αmLm + αn

∑
A

Ln + αa

∑
A

La

where A is the set of all actions required for the parse and each α is a scaling factor that
can be tuned for each loss.

For noisy datasets, an additional step is required for the training procedure; the
neurons that will be used by the child model must be selected. This is performed by
computing the neural pathways of the parent model using the parser state via PCA. The
pathways that explain the most variance are chosen and the heaviest loaded neurons
on those pathways are selected. During training, no gradient is passed back to the
parent model so the neuron selection process need not be continuous nor differentiable.
Training the child model thereby uses the parser state of the parent model as though it
were a fixed input.
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7.4 Experiments
7.4.1 Experimental Design

We provide three quantitative evaluations of our method: first, in order to compare our
parser to previous RST parsers, we train and evaluate our parser on the English RST-DT
corpus (Section 7.5.1). Second, we provide an ablation study of the added components
of our model along with the model we used as a base (Section 7.5.2). The ablation
study uses the same test set as the first experiment, so results are directly comparable.
Lastly, we train another version of our model on the Turnitin dataset, which has a
very different set of properties when compared to the RST-DT corpus. This last set of
experiments is designed to test the ability of the model to handle noisier, less structured
text (Section 7.5.3). The model is compared to the strongest baseline from the RST-DT
corpus retrained on the Turnitin dataset.

Model S N R F

JI AND EISENSTEIN (2014)* 64.1 54.2 46.8 46.3
FENG AND HIRST (2014A)* 68.6 55.9 45.8 44.6
LI ET AL. (2016)* 64.5 54.0 38.1 36.6
BRAUD ET AL. (2016)* 59.5 47.2 34.7 34.3
BRAUD ET AL. (2017)* 62.7 54.5 45.5 45.1
MABONA ET AL. (2019) 67.1 57.4 45.5 45.0
ZHANG ET AL. (2020A) 67.2 55.5 45.3 44.3

OUR MODEL 71.7 60.3 44.5 44.3
-DEPENDENCY PARSE EMBEDDINGS 71.2 58.4 43.6 43.6
-PARENT PARSER STATE 70.2 57.2 43.0 42.9
-MOST NUCLEAR EDU EMBEDDINGS 68.4 57.2 42.7 42.4
TRANSITION PARSER ONLY 67.2 53.7 39.9 39.8

Table 12: RST-DT test set micro-averaged F1 scores for labeled attachment decisions for
our model with varying components removed. Parsers from previous work are reported
as they appear in their original publication, with the exception of those marked with an
* where the reported results come from the Morey et al. (2017) replication study.

7.4.2 Evaluation Metrics

The evaluations of this work follow the setup described by Morey et al. (2017) and,
for consistency, only compare to models that were included in that replication study
or use the same evaluation method. The reason for this restriction is that it was found
that RST Parseval, the previous standard evaluation metric, artificially raised scores and
had been used inconsistently (Morey et al., 2017). Our models are therefore evaluated
using micro-averaged F1 scores on labeled attachment decisions for the four standard
metrics: span attachments (S), span attachments with nuclearity (N), span attachments
with relations (R), and span attachments with both nuclearity and relation labels (F).
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7.4.3 Implementation Details

The models were implemented using the DyNet neural network toolkit (Neubig et al.,
2017b). Training was performed on a NVIDIA GTX 1080. Early stopping was per-
formed based on the F1 scores of the model without an oracle on the development set,
with a patience of 3. The ADAM optimizer (Kingma and Ba, 2014) is used for training
with a learning rate of 0.001. Dropout (Srivastava et al., 2014) is used for regularization
and a dropout of 0.3 is applied to each hidden layer. All tunable α hyperparameters
were left at 1.

For the RST parsing models, word embeddings for both the parent and child models
were randomly initialized with 128 dimensional vectors. Each LSTM in the parent
model had 256 dimensions while in the child model, each LSTM had 512 dimensions.
For neuron selection, the 16 neurons with the highest factor loadings from the PCA
were chosen for each pathway that explained more than 1% of the model variance. The
number of dimensions for the PCA was tuned to explain 90% of the variance in neuron
activations.

The dependency parser was pretrained on Universal Dependencies v1 (Nivre et al.,
2016) derived from the Penn Treebank 3 (Marcus et al., 1999) using version 3.9.2
of the Stanford Universal Dependency Converter. Word embeddings and label MLP
dimensions were set to 64 while the recurrent layers and the arc MLP layers were set
to 128. Choice of optimizer, dropout, and early stopping criteria were the same for the
dependency parser pretraining.

Model S N R F

RST-DT
JI AND EISENSTEIN (2014)* 64.1 54.2 46.8 46.3
OUR MODEL 71.7 60.3 44.5 44.3
OUR MODEL (W/ NEURON SELECTION) 70.6 59.7 44.4 44.3

Turnitin Corpus
JI AND EISENSTEIN (2014)* 56.1 33.4 1.2 1.1
OUR MODEL 44.1 22.9 14.0 12.4
OUR MODEL (W/ NEURON SELECTION) 47.6 28.4 18.0 17.0

Table 13: Test set micro-averaged F1 scores for labeled attachment decisions for our
model on the RST-DT corpus and the Turnitin dataset. The models were evaluated
on each dataset both with and without pruning the parent parser state (W/ NEURON
SELECTION).

7.5 Evaluation
7.5.1 Parsing Results

Table 12 shows the performance across parsers on the labeled attachments metrics for
the RST-DT test set. We include reported metrics for several models beyond the best
baseline in order to provide a comprehensive view of recent work in the field, including
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other neural based models. The best version of our model gains a 4.5% increase in F1
score for the span metric (S) and a 7.9% increase in F1 score for combined span and
nuclearity metric (N) in comparison with the Feng and Hirst (2014a) model, the next
best model for those metrics. The increase was gained with a competitive, albeit 2.8%
lower span and relation metric (R).

Furthermore, we achieve these results with only the dependency parser as external
data. Pretrained embeddings of any kind were not required for either the dependency
parser nor the final RST parser and were found to not contribute empirically. Using
pretrained GloVe embeddings (Pennington et al., 2014) do not significantly improve the
performance over random initialization.

7.5.2 Ablation

We evaluated the model with key components removed to evaluate the effects of each of
those components on the final performance of the model. The components ablated were
the dependency parser embedding, the most nuclear EDU embedding, and the parent
parser state. These results are presented in the lower section of Table 12.

From the results we see that the largest contributor to our model’s performance
was the inclusion of the most nuclear EDU co-task without which, the parser does
not outperform the previous state-of-the-art on any metric. The parent model’s parser
state as a feature for action and relation prediction had the next largest effect with the
span and nuclearity metric (N) falling to the same level as when the most nuclear EDU
embedding was not used. Lastly, the syntactic information carried in the dependency
parser embedding contributed the least, but still had a significant effect on all metrics.

We also present the performance of the base model, our implementation of the
neural transition parser from Yu et al. (2018) with the same settings as each of the other
models from the ablation study. While it has competitive performance to prior work on
the span only metric (S), all of the metrics are considerably lower than the final model.
All ablation conditions were significantly different from the final model with p < 0.05.

7.5.3 Model Robustness with Neuron Selection

In addition to the evaluation on the standard RST-DT corpus, we evaluated our model
on the Turnitin dataset to test the robustness of the model against noisy data. Table 13
shows a comparison of the model performance on both the RST-DT corpus and the
Turnitin dataset. For each dataset, we include versions of the model that use neuron
selection as described in Section 7.3.2 and without. Performing the neuron selection
significantly (p < 0.001) increased performance on the Turnitin dataset with only a
minimal reduction of performance on the RST-DT corpus.

7.6 Discussion
We presented two principal augmentations to neural transition parsers for RST that re-
sulted in a 7.9% increase in span prediction and a 4.5% increase in nuclearity prediction.
These improvements were made while remaining competitive on relation prediction,
though no improvement was observed for that metric. Furthermore, we evaluated our
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model on an alternate, noisier dataset. We found that on this dataset our model had
more accurate relation predictions than past approaches from the inclusion of a neuron
selection step between the training of parent and child models in a boosting-like neural
ensemble enhancement.

The use of pathways to carry forward the most critical data from a parent model
to a child model allowed the model to stay robust against a far noisier type of data
as compared to the standard Wall Street Journal articles that the RST-DT dataset is
comprised of. Combined with the ability to analyze the function of neural pathways, the
ability to use the more general pathways to give a model a gerneralizable foundation
can be a powerful tool for developing models for other small or noisy datasets.

90



8 Neural Pathways in Transfer Learning
The lack of understanding about knowledge learned by neural networks has traditionally
constrained model selection across tasks by limiting the insights obtainable through error
analysis. Often conceptualized as feature extractors, neural networks inherently develop
specific pathways (i.e. features) that influence their predictive outputs. Error analysis
of these models has primarily focused on the role of training data and architectural
elements in dictating what features a neural network acquires. Researchers use their
intuitions on their findings to make modifications to their models. This chapter aims
to extend the capabilities of researchers in the field by providing a method to provide
insights into the effects that a specific type of these selection decisions have on the task
performance. Specifically, the task we opt to explore this method with is the transactivity
detection task, which is defined later in this chapter and benefits strongly from transfer
learning.

This chapter first establishes a foundational task that substantiates the feasibility
of shared neural pathways across models trained for different objectives. Situated
within the context of transfer learning and specifically exploring the transferability
from Recognizing Textual Entailment tasks to Transactivity detection tasks, the chapter
then examines the impact of altering the nature of the training data, particularly data
requiring differing computational characteristics for transactivity detection, on the neural
pathways that the model ultimately learns.

8.1 Neural Transfer Learning in Small Datasets: Transactivity De-
tection Task

Over the past decade, increasing interest in automated analysis of online discussion for
learning, sometimes referred to as Discourse Analytics, has been featured in research
on environments like Massive Open Online Courses (MOOCs). In particular, prior
work in MOOCs has demonstrated that students can benefit from discussion encounters
with other students (Ferschke et al., 2015). Much of this prior work has targeted
short synchronous collaborative discussion assignments or informal and unstructured
discussion in asynchronous discussion forums (Nelimarkka and Vihavainen, 2015).
More recently the topic of supporting team based project learning in MOOCs has
emerged (Wen et al., in press).

Prior work has demonstrated the value in automated analysis of discussion for
enabling effective assignment of students to project teams (Wen et al., in press), for
triggering dynamic support of group learning (Kumar et al., 2007), and for assessment
of learning processes (McLaren et al., 2007; Dascalu et al., 2015). Though a plethora
of frameworks for analysis of discussion for learning are in operation, many include
a dimension for collaborative knowledge construction where a valued conversational
behavior is one where students explicitly make their reasoning visible in a way that
connects back to ideas and reasoning expressed earlier in the encounter (Hmelo-Silver,
2013). One popular and long standing such construct is that of Transactivity.

In the remainder of the section we describe our approach. We then present an
evaluation that demonstrates that the novel approach beats a state-of-the-art baseline
both within the domain in which it was trained and a separate domain, without any
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drop in performance when moving to the separate domain. We discuss implications for
practice in at-scale learning environments. We conclude with limitations and directions
for continued research.

8.1.1 Transferable Attention Model from Entailment to Transactivity

In our work, we employ a transfer method that used the recognizing textual entailment
task as pretraining task. In particular, for the entailment pretraining we specifically
consider the simple attention model proposed in the language technologies community
(Parikh et al., 2016b). It is notable that despite the presented model’s simple structure
and relatively small number of parameters, it performs comparably with far more
complex models that have orders of magnitude more parameters. As we are looking to
work with small datasets, models that are both simple and effective are a natural choice.

In recent years, large datasets for the textual entailment task have been developed and
made available for researchers (Bowman et al., 2015). State of the art performance on
these datasets have been rising steadily with use of complex recurrent neural networks
(Sha et al., 2016), neural attention models (Parikh et al., 2016b), tree based neural
models (Munkhdalai and Yu, 2016), and hybrid methods using both of those approaches
(Wang et al., 2017; Chen et al., 2016). Models trained on such a corpus to identify
concepts linked through inference across a plethora of domains are required through the
training process to build conceptual representations for words that make identification of
conceptual links possible. The idea behind our computational approach is to leverage this
tendency in a pretraining step for training to detect Transactivity in one topic domain so
that rather than learn just the associations between specific pairs of concepts, the model
would learn to leverage the entailment representation space that enables computation
of idea relatedness of texts across domains. The hope is that a model trained to detect
transactivity in one domain but building on this general purpose representation space
would be able to transfer to another domain where the relevant set of linked concepts
is different but still within the broad range of topics covered inside the very broad and
diverse entailment corpus.

We refer to our adaptation of the original Decomposable Attention Model as the
Transferable Attention Model. Specifically, we adapted the model described above for
the purpose of transfer learning. We started by separating the model into two modules.
The fist module includes both the attention and comparison components, which generate
sentence representations from the input representations referred to in deep learning work
as word embeddings. The second module includes the classification step, which takes in
the two text segment comparison vectors and makes a prediction for the text pair’s class.

The reason we needed to separate these components of the model is that, while
performing transfer learning, we need to be able to dynamically manipulate the weights
or structures of the classification stage while maintaining the integrity of the parameters
learned in the representation stage. This allowed us the flexibility to have varying
numbers of classes between our source task and our target task. The modularity also
allows for varying types of classifiers or bindings to other models that we consider for
future work.
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8.1.2 Decomposable Attention Model

For our modeling work, we adapt the previously published Decomposable Attention
Model presented by (Parikh et al., 2016b) for the purpose of transfer learning from
the Entailment task to Transactivity detection. This model was chosen as a starting
point for this work by virtue of it demonstrating benefits including using an order of
magnitude fewer trainable parameters than other common methods in for approaching
textual entailment while maintaining a high level of performance. Furthermore, the
model was not bound by a task specific architecture or feature set that makes it a
good candidate for multi-task learning with pairwise comparisons. The Decomposable
Attention Model operates in four stages: input, attention, comparison, and aggregation.
We will provide an overview of their model to provide context for our adaptations and
an intuitive explanation for the benefit of the reader. See Figure 21 for a visualization of
the structure of the model.
Input: The model is defined with input of two text segments, a = (a1, ..., am) and
b = (b1, ..., bn) where m and n are the lengths of the respective segments. Each
vector ai and bj are real value, d dimensional vector embeddings for each word in
their respective text segments. For words not in the vocabulary, an embedding is
assigned randomly based on the word’s shape. The output of the model is defined as
y = (y1, ...yC) where C is the number of output classes for the dataset.
Attend: At the first stage of the model, each input is passed into network F where a
soft alignment between word embeddings is computed via a type of neural attention
(Bahdanau et al., 2014). The attention mechanism weights the importance of each word
in each sentence for how it will be used in the subsequent computations. The network,
F is a simple feed forward neural network with rectified linear activation (Glorot et al.,
2011). This results in a matrix of dimension m× n, eij = F (ai, bj), where each cell
contains a score of how important each given word in a text segment is, given that it
co-occurs with another word in the other text segment.

The matrix is then normalized for each direction to obtain two vectors, α and β, to
represent the aligned subphrases from b to a and a to b:

βi =

n∑
j=1

exp (eij)∑m
k=1 exp (eik)

bj ,

αj =

m∑
i=1

exp (eij)∑n
k=1 exp (ekj)

ai.

(3)

Compare: In the next stage, each aligned phrase is compared separately by an additional
feed forward neural network, G:

v1,i = G([ai, βi]) ∀i ∈ [1, ...,m],

v2,j = G([bj , αj ]) ∀j ∈ [1, ..., n].
(4)

There are now two sets of vectors that encode a comparison between the input and
the aligned subphrases of each input text segment.
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Figure 21: Decomposable Attention Model. Arrows with dotted lines indicate networks
with shared weights.
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Aggregate: The final stage of the model compresses the two sets of vectors via summa-
tion, giving a vector representation for each text segment with respect to the other.

v1 =

m∑
i=1

v1,i , v2 =

n∑
j=1

v2,j . (5)

These two vector representations are then concatenated and fed into a final feedfor-
ward neural network with softmax activation, H , to predict probabilities of class values:
ŷ = H([v1, v2]). The predicted class is thus ŷ = argmaxi ŷi

8.1.3 Datasets for Domain Generality

Throughout the experimental work reported in this chapter, we used five datasets to
demonstrate first task transfer and then domain generalizability. Short descriptions of
each are provided here. We will refer to two main tasks: the Entailment task, which is
our source task, and Transactivity Detection, which is our target task. We also refer to
two domains in which we perform the Transactivity task. The source domain, which is a
Power Plant domain, is where the training for the Transactivity task is performed. And
the target domain, which is the Superheroes domain, is the domain for the Transactivity
task where we do the test of domain generality of the trained Transactivity task model.

Stanford Natural Language Inference Corpus: As our primary dataset for the
Entailment task, we selected the Stanford Natural Language Inference Corpus (SNLI),
version 1.0 (Bowman et al., 2015). This corpus contains over 570 thousand annotated
text pairs for the recognizing textual entailment task. Pairs consist of a premise and
a hypothesis, and are labeled as entailment if the hypothesis is definitely true given
the premise, contradiction if the hypothesis is definitely false given the premise, and
neutral if the hypothesis could be true, but is not guaranteed to be given the premise.
The premises were captions from the Flickr30k corpus (Young et al., 2014) and the
hypotheses were generated via an Amazon Mechanical Turk task where workers were
asked to write three alternate captions that followed certain rules to create appropriate
hypotheses for the entailment task.

Multi-Genre NLI Corpus: The Multi-genre Natural Language Inference Corpus
(MultiNLI), version 0.9 (Williams et al., 2016) consists of over 390 thousand text
pairs annotated in the same way as the SNLI corpus described above. However, this
dataset includes text segments from four different categories: fiction, government texts,
magazine articles about popular culture, and transcripts of telephone speech. As this is a
comparable dataset to SNLI, we determined that it was a valid alternative for pretraining
in our experiments.

Power Plant Transactivity Corpus: Our larger annotated Transactivity dataset,
which is a shared dataset we used as a target task to transfer our Entailment model,
comprises 426 annotated text segments (Wen et al., in press). These text segments come
in the form of posts made by participants from Amazon’s Mechanical Turk working in
teams where they needed to determine which type of power source(s) a city should make
use of given a set of characteristics that the city possesses. For each instance, the labeled
post is in reply to a previous post which is also included in the representation of the
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instance for reference. Each instance was annotated as Transactive or not Transactive
with respect to the context.

Superhero MOOC Transactivity Corpus: This set of annotated Transactivity data
consists of 57 annotated text segments from a Massive Open Online Course in which
students design superheroes and discuss them with other members of the course (Wen,
2016). The data are collected conversations between students. Each contribution was
annotated as Transactive or not Transactive with respect to the conversation. Each
instance was annotated as Transactive or not Transactive, just like in the previous
corpus.

Microsoft Research Paraphrase Corpus: The Microsoft Research Paraphrase
corpus (Dolan and Brockett, 2005), has 5801 annotated sentence pairs that are either
labeled as paraphrase or not a paraphrase. This will be used in one of our validation
experiments.

8.1.4 Training and Implementation Details

Training the Transferable Attention Model is performed in three stages: first training the
model on the source task for a given number of iterations, then dynamically changing
the classification module to match the target task, and finally training the new model on
the target task until convergence.

During the training of the target task, error is propagated backwards through both
modules of the model to allow for fine tuning of the attention and comparison networks
for the Transactivity task. Input word embeddings are held fixed throughout the training.
This backpropagation method is a standard training approach for neural network models.

We implemented the Transferable Attention Model using the Keras deep learning
library (Chollet et al., 2015) with the Theano tensor library (Theano Development Team,
2016) as a foundation. Each network, F , G, and H were 2 layer feed forward densely
connected networks with 200 hidden units per layer. The structure of H was the same
for both target and source task with the exception that the output dimension of the target
task was 2 while in the source task the output dimension was 3. Text segments were
fixed at 100 tokens with zero vectors left padding the text segments if the length was
shorter and truncating if the length was longer. Word embeddings were 300 dimension
pretrained GloVe (Pennington et al., 2014) embeddings.

Our model was trained with the Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.001. Training was done on a NVIDIA GeForce GTX 760 with
CUDA 8.0 (Nickolls et al., 2008) and CuDNN 5 (Chetlur et al., 2014). One iteration
of pretraining on the source task was performed, classification weights were reset with
a random Gaussian distribution, and ten iterations of training on the target task were
performed per fold during the experiments. Metrics for the tenth iteration of target
dataset training were reported in all cases.

Beyond demonstrating the performance of our model on the given task, we also
motivated our experiments with validating that our model operated as our intuitions
predicted.

The metrics that we collect throughout our experiments are accuracy, to see the
percent correct of the predictions each model makes, and Cohen’s kappa, to evaluate the
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models’ accuracy in a way that controls for agreement by chance. Results are reported
in the Results and Discussions section and in each of the corresponding subsections.

8.1.5 Domain Generality Experiments

Cross Domain Generality
In order to evaluate our method on the task of Transactivity detection we test our

method of transfer learning against several baselines, which are described below.
After pretraining the model on the SNLI corpus, we perform a standard ten-fold

cross validation over our Transactivity training corpus, in each fold beginning with the
model weights generated by the pretraining. After each fold, we evaluate the trained
model on the held out Transactivity data from the source domain (i.e., the Power Plan
data). We also apply the model trained in each fold to the data in the target domain
(i.e., the Superheroes data). As is a standard practice for evaluation by cross-validation,
results for all the folds are averaged together for our final metric, reported in the Cross
Domain Generality subsection.
Baselines
Logistic Regression with Unigrams: Previous work by Joshi et al. (Joshi and Rosé,
2007) on predicting transactivity used a simple unigram model (Pang et al., 2002) with
logistic regression, trained on the Power Plant Transactivity Corpus. We therefore use
this as a baseline to connect our method with previous work in that field.
Basic Neural Network: As our model consists of only feed forward neural networks,
we evaluated the performance of a basic neural net architecture without an attention
mechanism using the same GloVe word embeddings. We use a 2 layer feed forward
neural network with 200 hidden units per layer, as that is the equivalent structure for
the classification step of our model. We allowed this model to be pretrained as with our
Transferable Attention Model.
Bidirectional Long Short-Term Memory: Many systems in entailment use LSTM
(Hochreiter and Schmidhuber, 1997), and the bidirectional variant, BLSTM (Graves and
Schmidhuber, 2005) based models with word embeddings (Bowman et al., 2016). We
also evaluated our model with sentence embeddings generated by single layer BLSTMs
with 128 hidden units each direction, then classified with a densely connected layer.
This model was also pretrained on the SNLI corpus.
Lexical Overlap In early work with textual entailment, it was shown that simple word
overlap is a strong predictor of entailment (Bos and Markert, 2005). Because of the
similarity between entailment and transactivity, we hypothesized that this may hold for
our task as well so we investigated to ensure our model was making inferences beyond
that naı̈ve method. To eliminate this possibility, we removed all overlapping words
between target and context sentences for both the entailment dataset and the transactivity
datasets during test and training. We then report the results of our model, trained and
evaluated as in our first experiment above.

This makes the task considerably more difficult as the model loses access to a large
amount of content based context. It therefore must rely on non-overlapping structural
information in the texts, synonyms, or more abstractly connected words.
Dataset Alignment In the SNLI dataset, there are three classes, entailment, contra-
diction, and neutral, one of which can be applied to each text pair. However, in the
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transactivity dataset, each pair can only be identified by either transactive or not trans-
active. When arranging the data between pretraining on entailment and training on
transactivity data, we need to decide how these classes map to one another to give
the pretraining the most impact. Entailment and neutral are easy to correspond to
transactive and not transactive respectively given that the former indicates a logical
connection between the two while the latter indicates there is not. Contradiction, on
the other hand, is more difficult to determine. The hypothesis can either be considered
connected to the premise through logic that makes the hypothesis impossible or it can
be considered not connected as it is not entailment.

We tested applying the contradiction component of the pretraining data differently
to evaluate which performed the best for the transfer learning. The conditions that we
evaluated were relabeling the contradiction cases as either entailment (contradiction
positive) or neutral (contradiction negative) before evaluating as in the Cross Domain
Generality experiment. We also pretrained with all three entailment classes and just
ignored the contradiction label while training and evaluating on transactivity. Discussion
of these results can be found below in the Results section.
Ablation This set of experiments was designed to make sure that the transfer learning
was having sufficient impact to warrant their inclusion in the model. We first tested
to ensure that the pretraining was being utilized by the model and not simply being
overwritten by the training that the model performs over the transactivity dataset. To
accomplish this, we executed the experiment as in the Cross Domain Generality case
without pretraining the model on the entailment dataset. We then evaluated on only the
in domain data.

To ensure that the model was not simply applying textual entailment to our transac-
tivity dataset and that it learned something meaningful from the small dataset, we ran
the experiment with only weights learned on the entailment task and evaluating on the
in domain transactivity test data. Both of these experiments are reported below in the
Results section.
Alternative Datasets The last set of experiments were motivated by the possibility that
the entailment task was not necessarily the explanation for the performance of the model.
We considered two alternative explanations: that the SNLI corpus may be particularly
suited for transfer leaning in this domain, or that any sentence comparison task would
transfer sufficiently for transactivity to be predicted.

To evaluate the first consideration, we tested the model using an alternate source
dataset, the MultiNLI corpus. In this evaluation, our source task was the same as before,
but the data used to pretrain was different.

To evaluate the second consideration, we evaluated our model when the source task
was changed to the similar, though not identical, task of paraphrase detection using
the MSRP corpus. Key differences between paraphrase detection and entailment is
that entailment represents a directed relationship between text pairs, while paraphrase
detection is undirected. Paraphrase detection also has only two output classes compared
to entailment’s three.

One issue that we needed to control for when pretraining with paraphrase detection
was that the dataset was significantly smaller than either entailment corpus. To provide
a fair comparison, we randomly selected an equivalent number of SNLI and MultiNLI
examples to pretrain with and reported those results as well.
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Data Set Size
One of the most frequent questions asked about automated approaches to discussion

analysis that require training is how much data is required. Thus we include one
additional experiment that manipulates the amount of training data and shows how
performance varies as a result.

Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
Unigrams with LR 0.795 0.667 0.510 0.376
Basic Neural Network 0.798 0.721 0.498 0.305
Bidirectional LSTM 0.814 0.782 0.543 0.472
Transferable Attention (TA) 0.840 0.832 0.607 0.611

Table 14: Model performance in domain versus out of domain compared to baselines.

Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
Unigrams with LR 0.781 0.667 0.476 0.363
Basic Neural Network 0.761 0.733 0.412 0.309
Bidirectional LSTM 0.812 0.772 0.524 0.442
Transferable Attention (TA) 0.828 0.810 0.475 0.551

Table 15: Model performance in domain versus out of domain compared to baselines
with no lexical overlap between target and context.

Models Accuracy Kappa
TA 0.840 0.607
- pretraining 0.700 0.035
- transactivity training 0.307 0.005

Table 16: Model performance with varying training stages removed.

8.1.6 Results

Cross Domain Generality Table 14 shows the results for our comparison of our model’s
performance on the in-domain transactivity dataset to the out of domain transactivity
data set after pretraining on the SNLI corpus for the entailment task. We find that our
model outperforms the baselines in all metrics, with over 80% accuracy and a kappa of
over 0.6 indicating good agreement with annotators. When comparing accuracy between
tests, we can see that our model loses less than one percentage point, while the unigram
baseline drops over 12 percentage points when evaluating on the out of domain set. The
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Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
TA with contradiction negative 0.848 0.824 0.542 0.586
TA with contradiction positive 0.828 0.791 0.598 0.511
TA with three classes 0.840 0.832 0.607 0.611

Table 17: Model performance with respect to how contradiction was treated in task
transfer.

Accuracy Cohen’s Kappa
Models In domain Out of domain In domain Out of domain
TA with full SNLI training set 0.840 0.832 0.607 0.611
TA with full MultiNLI training set 0.869 0.804 0.647 0.544
TA with both SNLI and MultiNLI 0.833 0.828 0.536 0.585
TA with truncated SNLI 0.781 0.786 0.328 0.464
TA with truncated MultiNLI 0.764 0.761 0.255 0.383
TA with MSRP training set 0.752 0.751 0.210 0.345

Table 18: Model performance with respect to dataset used for pretraining.

simple word embedding based baselines also appeared to drop across domains, though
not as dramatically as the unigram model.

From this, we can infer that learning to operate over general semantic vectors can
influence the domain generality of classification models. We also demonstrate that
transferring learned representations from a deep model trained on a general source task
can improve performance on multiple domains of a target task even if the model was
only trained on a single domain of the target task.
Lexical Overlap A similar story is seen in Table 15 with lexical overlap between target
and context text segments is removed. All of the tested models dropped performance
modestly, though our model still managed to get an accuracy of over 80%. This provides
compelling results that the reasoning our modeling is doing between the two text
segments is more abstract that simply measuring word overlap.
Dataset Alignment Because the source task is a three class classification and the
target task is a two class classification, we considered alternative alignments between
categories, which we found to have different implications for performance in the two
transactivity datasets. The results presented in Table 17 make sense when the data is
examined qualitatively.

In the condition in which contradiction was used as a positive example, the model
obtained a notably higher kappa on the in domain dataset that contained more com-
petitive transacts, demonstrating disagreement. However, when contradictions were
treated as negative examples, the model performed much better on the out of domain
dataset which contains a lower percentage of competitive transacts. When contradiction
is given a separate class during source task training and not used in target task training,
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Figure 22: Graph of the change in kappa score over varying number of transactivity
training instances.

the kappa is higher for both target task datasets indicating that the model was free to
make a determination on the role of learned contradiction-type relationships as it applies
to the transactivity task.
Ablation

Table 16 reveals that the pretraining on the source task and the training on the target
task are both critical for the performance of the model. This indicates that the model
learned important representation structure from the large amount of data provided with
the source task. It also can be seen to not only classify the target task as if it were the
source task, but rather it learned about the difference between the tasks sufficiently to
adapt to the new task.
Alternative Datasets In our final set of experiments as reported in Table 18, we can see
that there are comparable results between using SNLI and MultiNLI for pretraining. An
interesting observation is that pretraining on the MultiNLI corpus seemed to perform
better for in domain transactivity detection while pretraining on the SNLI corpus had
stronger results for out of domain prediction. This raises some interesting questions
regarding how the domain of the source data sets can influence the generalizability of
target datasets while transferring learning.

We can also see that with a smaller number of source task text pairs, it appears that
SNLI provides the best performance, followed by MultiNLI, then MSRP performs the
worst. This provides some evidence that the entailment task is providing more valuable
pretraining as compared to paraphrase task.
Dataset Size Here we address the question of how much data is required for training in
order to achieve the best performance. We ran a series of cross-validation experiments
using the full Transfer Attention Model where we manipulated the number of training
instances sampled from the maximal training set on each fold of the cross-validation. The
results are displayed in Figures 22 and 23 for Kappa and Accuracy respectively. Here
we see progressive improvement as more and more data is used, without a substantial
plateau. Thus, it is possible even better performance could have been achieved had
we provided more data, and a smaller training set size would have yielded poorer
performance.
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Figure 23: Graph of the change in accuracy score over varying number of transactivity
training instances.

8.1.7 Discussion and Implications

The results presented in this chapter demonstrate that the novel neural approach to
classification we present achieves an improvement in accuracy as well as generalizability
over previously published work on automated Transactivity detection (Joshi and Rosé,
2007; Rosé et al., 2008; Ai et al., 2010; Mu et al., 2012; Gweon et al., 2013).

Automated Transactivity detection has a variety of applications in online learning
environments, especially where discussion is part of the learning process. The presence
of Transactivity is a significant predictor that a collaborative discussion is conducive to
learning (Berkowitz and Gibbs, 1983; Azmitia and Montgomery, 1993; Joshi and Rosé,
2007; Gweon et al., 2013; Rosé et al., 2017). That makes Transactivity a construct that
is particularly valuable to be able to detect.

In general, automated detection of discussion processes that are either positively or
negatively related to learning can be applied to problems such as automated assignment
of students to project teams (Wen et al., in press), for triggering dynamic support of
group learning processes (Kumar et al., 2007; Ferschke et al., 2015), and for assessment
of those learning processes (Rosé et al., 2017). Raising the level of accuracy at this
detection increases the feasibility of offering these forms of automated support in
massive online learning environments.

The generalizability result has particular implications for learning at scale. Scale is
not just about reaching a large number of students in one course or offering the same
course many times, but being able to apply a form of learning support broadly across
courses. Without the ability to generalize a model’s performance to new data sources, it
would be necessary to train a new Transactivity detection model for every course, or
maybe even every assignment where the model will be used. Clearly, a solution that
requires retraining over and over is more costly to use than one that can be trained once
and then reused many times in many different contexts.
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8.2 Commonalities and Differences in Transactivity Models Across
Different Types of Writing

In this study. we investigate the ability to adapt a model to a new student population,
namely. masters students in a large North American business school, where we observe
strikingly different patterns of transactive exchange than in prior studies. We found
that this difference prompted required both a reformulation of the coding standards and
innovation in the modeling approach (Fiacco et al., 2021).

8.2.1 Automated transactivity detection experiments

For our experimental exploration for this work, our goal is to find a model that can most
accurately predict the various facets of transactivity that we have defined in our dataset.
To this end, we started with the Transferable Attention Model for transactivity detection
to evaluate the ability of it to detect our more nuanced definition of transactivity in
our data. A data analysis was performed to attempt to explain the discrepancy in
performance of the baseline model on each dataset. With the lessons learned from the
data analysis, a new detector for transactivity was proposed to address the shortcomings
of the baseline model. We provide an evaluation of the new transactivity detector.

Results for each experiment for transactivity detection were obtained via a 10 fold
crossvalidation where each fold was randomly assigned but consistent throughout the
different conditions.
Baseline: Transferable attention model for transactivity detection We use the
Transferable Attention Model described above as the baseline for this section. Similarly
to the previous section we create analogues for entailment in the transactivity task. While
the entailment task takes in a premise and a hypothesis statement to train the model with
the hypothesis statement being the statement to be determined if the entailment relation
holds, in the transactivity task, the premise is replaced by the context and the hypothesis
is replaced by the message. The message is the text that is to be labeled as transactive
and the context is the text for which the message is responding to.

For experiments on our dataset, the message was the post that is to be determined
to show one of the aspects of transactivity while the context is the post that message
was a response to. Note that the message and context may not be temporally adjacent
as determination for message response was made via the forum response tree and
participants can respond directly to prior posts.
Comparisons of transactivity data with respect to transferable attention model
The first research question we sought to address stems from a comparison between
the data used previously to train the Transferable Attention Model and the new dataset
from class discussions noting that previous datasets used far more concrete language as
opposed to our new dataset. Concreteness of language is characterized by referring to
specific objects, people, or actions while abstractness is defined as language referring to
concepts and ideas.

In Table 19, we present the abstractness of each dataset based on the average
abstractness of inputs using the methodology from Brysbaert et al. (2014). We evaluate
the transferable attention model using an alternative entailment pretraining dataset, the
Multi-genre Natural Language Inference corpus (MultiNLI) (Williams et al., 2018)
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Datasets Text Abstractness
SNLI (Bowman et al., 2015) 0.334
MultiNLI (Williams et al., 2018) 0.530
Powerplant Transactivity Corpus 0.538
MBA Student Corpus 0.583

Table 19: Abstractness for datasets relevant to transactivity detection; scale 0 (concrete)
to 1 (abstract).

which we found to be considerably more abstract than the Stanford Natural Language
Inference (SNLI) corpus (Bowman et al., 2015) which was the pretraining corpus for
the original Transferable Attention Model. This pretraining corpus was hypothesized to
improve the model’s performance by better representing the more abstract text found in
the MBA student data.
Transformer model for transactivity detection One of the key shortcomings of the
Transferable Attention Model is its inability to take into account word order. This
is especially relevant to the Challenging Views dimension as negation is common
within examples of that dimension and the meaning of a negation is highly word order
dependent. To address this, we propose to use a class of models from the Natural
Language Processing literature called transformers (Vaswani et al., 2017). The benefit
of this type of model is that it combines the capability for self-attention with sequential
reasoning to build a numerical representation of a sequence of text that can be used to
classify that sequence.

Specifically, we use the pretrained transformer model, RoBERTa (Liu et al., 2019)
which incorporates some optimizations of the BERT transformer model (Devlin et al.,
2019). This model, like the GloVe embeddings used in the Transferable Attention Model,
was pretrained on an enormous amount of general text data and will be fine-tuned on
both the entailment pretraining task and the transactivity task. The model was then fine-
tuned on the Recognizing Textual Entailment task similarly to the Transferable Attention
Model. This fine-tuned model was the based model for each of the crossvalidation folds.
For each fold, the model was further fine-tuned on the transactivity data with a separate
classification head as the entailment classifier.

8.2.2 Evaluation

We evaluated the potential to automate analysis using the extended transactivity defi-
nition proposed here beginning with the best published approach from Fiacco & Rosé
(2018), and comparing its approach to three other variants. From Table 20, it is evident
that pretraining the Transferable Attention Model on the MultiNLI dataset had a large
positive effect (p < 0.05) on all of the dimensions of transactivity. The increase was
most notable for Active Listening while there were only modest improvements for
Challenging Views and Idea Expansion.

Even more dramatic is the increase in performance from the redefinition of inputs
for the Transferable Attention Model to make the model perform self-attention rather
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Cohen’s Kappa
Models Active Listening Challenging Views Idea Extension
Transferable Attention Model (Fiacco & Rosé, 2018) 0.840 0.832 0.607
Transferable Attention Model+MultiNLI 0.781 0.786 0.328
Transferable Attention Model+MultiNLI+Self Attn. 0.869 0.804 0.647
RoBERTa+MultiNLI 0.833 0.828 0.536

Table 20: Cohen’s kappa scores of transactivity detection models on 10 fold crossvalida-
tion.

than attending between context and content. Furthermore, the RoBERTa model is able
to significantly improve upon the performance on the Challenging Views dimension.
However, it did not significantly improve on Idea Extension and underperformed on
Active Listening. All differences between rows in Table 20 are significant (p < 0.05).

8.2.3 Discussion

The results of the experiment reveal data considerations that must be taken into account
when modeling approaches are used for automated detection of constructs such as
transactivity. The line of experimentation reported here was prompted by an observation
that our previous work of demonstrating of domain generality could not be generalized
to a substantially different student population with its own distinctive discourse practices.
The investigation reported in this paper points to needed adjustments first at the level of
operationalization of the construct and then at the level of modeling approach – with
synergistic considerations between the two – in order to achieve success.

In particular, the results reported above reveal a larger increase in performance for
the Active Listening dimension between the baseline Transferable Attention Model and
the version that used the MultiNLI pretraining as compared to either Challenging Views
or Idea Extension. We attribute this largely to the vocabulary of the NLI datasets as
compared to the MBA student data. The MBA student data is far more abstract than the
SNLI dataset as compared to MultiNLI dataset. Active Listening is a relatively simple
task as compared to Challenging Views or Idea Extension as it is frequently signalled
by agreement or disagreement. As the SNLI dataset is based off of image descriptions,
there is little opportunity for language such as that to occur. The MultiNLI corpus pulls
data from a far broader range of genres and may expose the model to more relevant
sentence forms. For the other two transactivity dimensions, the limiting factor was not
as much the vocabulary, but how the model was able to use the data it had.

There was a large jump in performance across all dimensions of transactivity by
redefining the Transferable Attention Model as a self-attention model as opposed
to attending between the content and its context. While in data with less abstract
contributions, the important factor for detecting transactivity may be ensuring that there
are aligned phrases between the content and the context, in our MBA student dataset,
it appears to be more important for the model to understand what the responder is
contributing. This result aligns with our qualitative observations that the MBA students
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had deeper contributions and more structured responses as compared to the contributions
in prior datasets. Detecting transactivity, in this case, is more about evaluating how well
formed the response is, regardless of the context.

8.3 Conclusion
Broadly, this chapter seeks to make a small advancement to the area of model selection
for transfer learning by matching the properties of the models we select to the features
that the networks were induced to learn from the data. Specifically, we do this in
terms of generalizing performance in detecting transactive interaction in electronically
mediated communication. This serves to broaden our understanding of how variable task
objectives and training data influence neural pathway development, ultimately offering
a more flexible and insightful framework for neural network design and application.
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9 Identifying Propagation of Problematic Pathways in
Fine-Tuned AI-Writing Detectors

In this chapter, we examine foundation models and their application to AI writing
detection in an effort to understand the evolution of potentially biased components of a
RoBERTa-based (Liu et al., 2019b) AI-writing detection model (Solaiman et al., 2019)
during the fine-tuning process. The first step towards this goal is the construction of a
new AI-writing detection dataset within the context of student writing that complements
existing datasets in AI-writing detection to assist in the identification of the source of
bias within our analysis model.

Second, we undertake an in-depth examination of the fine-tuning process within
functional groups of neurons in the LLM. This granular analysis allows us to uncover
patterns and mechanisms that may otherwise remain obscure, offering valuable insights
into how biases might be inadvertently introduced or amplified during this critical phase
of model training.

Lastly, we present empirical evidence to show that important functional components
are retained from pretrained models, leading to sub-optimal behavior even in cases
when early stopping would culminate. This finding yields a cautionary note about the
potential risks of heavily depending on a small pool of pretrained LLMs, often referred
to as foundation models in the literature (Bommasani et al., 2021; Zhou et al., 2023), for
a broad spectrum of tasks. It calls for further investigation into the implications of these
inherited components and proactive measures to prevent the propagation of undesirable
biases.

The contributions of this work can thus be summarized as follows:

• The introduction of a novel AI-detection dataset specifically designed for student
writing.

• An analysis of the evolution of functional groups of neurons during the fine-tuning
process for a RoBERTa based AI-writing detection model.

• Evidence demonstrating that the most important functional components for a
model’s decision making are inherited from the pretrained weights.

With the release of a new AI-writing detection dataset for student writing, this
work advocates expanding an under-researched aspect of bias in machine learning,
the risk of a foundation model monoculture. While understanding the functions of
coordinated neuron groups is still nascent, it is imperative to address both bias detection
and mitigation in LLMs while also avoiding a homogeneous pool of pretrained models.
By addressing these concerns, we can foster a more diverse and responsible approach to
AI development and contribute to the advancement of the field.

9.1 The Role of Neural Pathways in Model Decision Making
From Chapter 4, we have a method for aligning separable Bayesian networks with
the functional components of a neural network. Each aligned pathway can therefore
represent a subgraph of the equivalent Bayesian structure encoded by the neural model.
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This can be viewed as an independent decision-making component of the neural network.
This enables us to examine each component separately when determining if the model
uses sensitive information.

There is a fundamental limit to the information that pathways can extract from
a model wherein non-separable variables cannot be distinguished from each other
(discussed in Chapter 4) and a set of defined outcomes from the approach (Chapter 5).
These limitations may seem restrictive because variables in natural data, especially those
of interest to the bias and fairness community, are often coupled and do not meet the
separable criteria that idealized neural pathways would require.

Though this is the case, we can still extract useful insight from the pathways
by utilizing external knowledge of the task to assert for how likely a pathway that
correlates with protected information is to represent a problematic variable. Through
the methods described in Chapter 5, we can distinguish between a proxy variable for
sensitive information and an allowable variable that is only correlated to the sensitive
attribute. The key mechanism from Chapter 5 that we use to make this distinction is the
examination of error cases in the model predictions in light of available external task
information.

At this time, it is of the utmost importance to stress that the ability of this method to
distinguish reasonable from problematic pathways is limited by the external information
that is brought to the analysis. A correlation with sensitive information cannot be
explainable without having some knowledge of the proposed explanation. We therefore
perform our analysis in a “fail-safe” manner, where a pathway that is correlated with a
protected attribute is considered problematic until sufficient evidence demonstrates that
it is not.

9.2 Aligning Functional Components Over Time
In previous work on extracting functional components, extraction was only performed
on the final trained model (Fiacco et al., 2019a, 2022) (or multiple trained models
for comparison (Fiacco et al., 2023)). However, there is no precedent for aligning
functional components across time for the same model. In this section, we describe a
procedure to extract functional components from snapshots of a model at each epoch
during fine-tuning and correlate the resulting important components across adjacent
epochs. The procedure has three phases: first extracting and saving the activations from
the model during training; second, computing the functional components activations
and determining the importance of each component; and third, correlating components
within each temporally adjacent epoch.

In the initial phase, activations are extracted and saved from the model during its
training process. For each epoch (including model before fine-tuning), these activations
correspond to the responses of the neurons to every data instance in the analysis set.
These activations are recorded and stored in an activation matrix, A, which forms the
basis for subsequent computations. This technique provides a time-series of the model’s
neuron activations during the course of its training.

In the second phase, the functional components’ activations are computed, and
the importance of each component is determined. The computation of functional
components is achieved by applying ICA to the activation matrix A. This step yields the
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Dataset Total Documents Average Tokens/Document
GPT-WIKIPEDIA-INTROS 300,000 163
AES-ASAP-DETECT 3566 417
TOEFL ESSAYS 182 420

Table 21: Comparison of key statistics between human-authored and AI-generated
essays in the AI-augmented corpus

functional component activation matrix, Fmodel. Each component’s importance is then
evaluated by calculating the Pearson’s correlation coefficient between each column of
Fmodel and the model’s predictions. An important functional component is thus defined
as above with the threshold for importance set to 0.05, which while it appears to be a
very low correlation, in large models, each functional component often only contributes
to a small portion of the models output.

The third phase involves correlating components within each temporally adjacent
epoch. Up until this point, each time-step of the model was treated as an independent
entity, however, in this phase components are correlated across consecutive epochs.
This step involves tracking the correlation between the identified important components
from one epoch to the next, producing a sequence of correlation matrices, C where each
matrix has the shape of Pk × Pk+1 where P is the number of components of the model
at time-step k. This novel approach of aligning functional components across time
allows for the observation of the model’s learning behavior and the change in influence
of these components on the model’s predictions over the course of its training.

9.3 Datasets for Distinguishing Between Generated and Human
Written Language

Three datasets are used in this work, our AI detection model was trained on the GPT-
Wikipedia-Intro dataset (Aaditya Bhat, 2023) and evaluated with both the TOEFL essays
dataset (Liang et al., 2023) and our newly constructed dataset (AES-ASAP-Detect).

9.3.1 GPT-Wikipedia-Intro Dataset

This dataset consists of 150,000 topic introductions from Wikipedia, along with corre-
sponding introductions generated by the “Curie” GPT model (Aaditya Bhat, 2023). The
generation process followed a specific prompt format, wherein a 200-word introduction
in the style of Wikipedia was created for each topic. The prompt included the title of
the Wikipedia page, and the initial seven words of the actual Wikipedia introduction are
used as starter text. From this dataset, we randomly divided the topics into an 80% train
and 20% evaluation set wherein both the human and GPT generated introductions for a
given topic would both be in only one of the sets.
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9.3.2 TOEFL Essays

This dataset (Liang et al., 2023) is comprised of 91 human-authored TOEFL (Test of
English as a Foreign Language) essays obtained from a Chinese educational forum
each of which has a corresponding essay that was revised by ChatGPT-3.5 (OpenAI,
2022). This dataset provides a corpus of essays from non-native English speakers
which highlighted the challenges faced by several off-the-shelf AI detection tools in
differentiating between them and AI generated text. Furthermore, it was found that it
was also difficult for AI detection tools to determine that the revised essays were written
by ChatGPT.

9.3.3 ASAP-AES Detect

While Liang et al. (2023) constructed a dataset derived from the Automated Essay
Scoring dataset from the Hewlett Foundation’s Automated Student Assessment Prize
(AES-ASAP)3, their approach was to use ChatGPT to simplify the existing essays to
make them explicitly more difficult to distinguish from non-native English writing.
However, we desired a corpus of fully AI-generated essays to evaluate the capability of
AI-writing detectors to distinguish between the writing styles of students and ChatGPT
when following an essays prompt.

With this goal, we present a supplement to the first essay set of the AES-ASAP
dataset, called AES-ASAP-DETECT. By using the AES-ASAP dataset as a foundation,
a complementary dataset is generated via prompting ChatGPT (OpenAI, 2022). The
use of the dataset of human writing in conjunction with the LLM provided a suite of
generated essays that are more diverse and similar in content and style to the human
written essays. This makes for a more challenging dataset for detecting AI-generated
writing and a better foundation for the further exploration of the learned functions of the
detectors.

The first essay set of the AES-ASAP corpus consists of over 1,700 essays with a
broad range of writing styles where each address the topic of the impact of computers
on society. The authors of the essays were grade 8 students. The LLM was prompted to
write the essays based on summaries of the original essays constructed from a previous
LLM prompt, the qualities of a good essay from the rubric for grading the essays, and
the original essay prompt. The essay summaries were prompted to be 3 sentences and
were also generated using ChatGPT-3.5.

Furthermore, an additional pass was required for the essay generation was required
because there was a preprocessing step performed on the original essays wherein proper
nouns and numbers were replaced by numbered placeholder tokens (e.g. @ORGANI-
ZATION3). While in this work, we are only using this dataset as an evaluation set,
without this step, any model trained on it would yield a trivial, degenerate solution to dif-
ferentiate between the human and AI generate texts by identifying the presence/absence
of the placeholder tokens. Therefore, a new prompt was used to modify the generated
essays to include those tokens in their text with the appropriate number scheme. The re-
sulting modified essays we observed to have a reasonable distribution of the placeholder

3https://www.kaggle.com/c/asap-aes
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Epoch
Dataset 0 1 2 3 4 5 6 7
GPT-Wikipedia-Intros 0.884 0.997 0.983 0.679 0.701 0.718 0.723 0.724
AES-ASAP-Detect 0.722 0.993 0.98 0.000 0.000 0.000 0.000 0.000
TOEFL 0.352 0.043 0.000 0.000 0.000 0.000 0.000 0.000
Number of important FCs 70 16 91 98 67 46 29 21

Table 22: Evaluation performance on varying datasets (F1 scores) and the number of
functional components per epoch. Note that Epoch 0 refers to the pretrained model
without additional fine-tuning.

tokens, making a more broadly applicable dataset. Altogether, the dataset creation
required 5.5 million tokens of usage on the GPT API.

This AI-augmented corpus offers a novel contribution to the realm of NLP. Its
primary function is to serve as resource for evaluating AI-generated writing detectors,
specifically for the purposes of analyzing and understanding what is learned by the
detection models. As this corpus represents an valuable resource for future NLP research
in a rapidly emerging area of study, we have made the generated essays available as
well as the construction details such as the prompts and scripts use to create the dataset4.
However, it is important to note that results from the GPT API may be non-deterministic.

9.4 Experiments
This section presents the methodology employed to investigate the performance and
behavior of a fine-tuned RoBERTa based AI writing detection model. The model
was trained using pretrained weights from the RoBERTa-base GPT-2 AI detection
model (Solaiman et al., 2019) and fine-tuned for this work with the GPT-WIKIPEDIA-
INTRO dataset5.

9.4.1 RoBERTa Base AI Detection Model

The RoBERTa-base OpenAI Detector model (Solaiman et al., 2019) is utilized as
the pretrained model in our analysis experiments. Derived from the RoBERTa base
model, it has been fine-tuned with the outputs from the GPT-2 model (OpenAI, 2021),
a 1.5B-parameter language model LLM. This model was chose as the base for our
experiments because, while it was fine-tuned to perform the AI-writing detection task, it
was not trained on any data from the LLMs that generated the data used in this work.
Furthermore, because of the availability of this model for AI-writing detection, it is
relevant to the current discourse on such models. All of the hyperparameters for the
model were fixed at their default value.

The GPT-Wikipedia-Intro dataset served as the training data for fine-tuning where
the model was trained until it reached well past the point of over-fitting, ensuring that the
evolution of the functional components would be fully discernible. Before fine-tuning

4Scripts and prompts: ¡REMOVED FOR ANONYMITY¿
5Code: ¡REMOVED FOR ANONYMITY¿
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Figure 24: Correlations between important functional components of the neural network
over epochs of fine tuning. The strength of the lines represents the strength of the
correlations with the positive correlations colored blue and the negative correlations
colored red. Nodes in the graph that are filled red correspond to important functional
components that correlate strongly with both non-native English essays and AI-generated
essays, but not native English essays. The relative variance explained in the model
activations by each functional component is represented by the vertical ordering of the
nodes, where nodes increase in variance explained as they approach the bottom of a
column. Epoch 0 refers to the pretrained model without additional fine-tuning. Letters
(a-g) highlight the following features of the figure: (a) important functional components
in the pretrained model; (b) the contraction of important functional components in the
first epoch of fine-tuning; (c) the expansion of important functional components in the
second epoch of fine-tuning; (d) the reorganization of functional components resulting
in test performance plummeting; (e) the difference in function of functional components
in epochs 3+; (f) the ‘X’-like pattern of correlations between functional components in
later epochs; and (g) the decaying number of important functional components as the
model over-fits.
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and after each epoch, the model state was saved for subsequent analysis and the model
activations for the held out analysis set were recorded6.

The functional components were extracted for each time-step of the model using the
held out evaluation data from the GPT-Wikipedia-Intro dataset (60,000 documents; 50%
human written, 50% AI generated). Only the final embedding of the transformer model
was used to compute the functional components and a new ICA model was computed
and saved for each time-step. The dimensionality reduction was tuned to explain 99%
of the variance of the activations of the model on the analysis set. The importance
of each component for each time-step of the model was computed and recorded. A
correlation analysis was performed to assess the similarity or dissimilarity between
the functional components extracted from different epochs. Significantly correlated
(p < 0.05) important functional components were graphed to visualize the evolution of
the functional components across time.

9.4.2 Correlation of Functional Components with Biased Model Behavior

The experimental analysis was further extended to the two other datasets to assess a
known biased behavior of many AI-writing detection models (Liang et al., 2023): a
bias toward flagging writing by non-native English speakers as AI-generated content.
To perform this experiment, the same ICA models that were fit on the activations from
the GPT-WIKIPEDIA-INTRO dataset were utilized on the activations for each time
step’s model on these additional datasets. The neuron activations were collected and the
resulting functional component activations were subsequently concatenated.

Each concatenated functional component activation vector was correlated with a
vector that was constructed according to the following rule: 1 if an essay was either
human-written from the TOEFL ESSAY dataset, or AI-generated from the AES-ASAP-
DETECT dataset. This rule identifies functional components that do not contribute
significantly to the differentiation between human and AI-written texts, but rather
discriminate between native English speakers’ writing and AI-revised essays, and non-
native English speakers’ writing and LLM-generated texts.

The identified important components that yielded a Pearson’s r value greater than
0.5 or less than -0.5 were particularly noted. In the corresponding visualization, these
components were highlighted in red to effectively mark their presence to track the
propagation of such components through the fine-tuning process.

9.5 Results
In this section, we present the performance and our observations of the AI detection
model. The results are structured into two subsections based on whether they are focused
on the the model within a single epoch (i.e. a snapshot of the model) or if the results
refer to the behavior of the model as it changes across epochs. In the subsection “Model
Evaluation by Epoch,” we provide the model’s performance and highlight the important
functional components of the model on a per-epoch basis. On the other hand, the
subsection “Inter-Epoch Results” focuses on the interactions and comparisons between

6Model weights (∼ 5GB) and activations (∼ 29GB) are available upon request.
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different epochs, shedding light on the model’s behavior, overfitting tendencies, and
dynamics of the important functional components.

9.5.1 Model Evaluation by Epoch

The performance of the model on the three evaluation datasets is presented in Table 22
which provides the F1 score across various epochs. It is notable that, without pretraining,
the initial performance (Epoch 0) of the pretrained model varied significantly across
the datasets. The model performed best on the GPT-WIKIPEDIA-INTROS dataset with
an F1 score of 0.884, followed by the AES-ASAP-DETECT dataset with 0.722, and
least effectively on the TOEFL ESSAYS dataset at 0.352 F1 score. These differences
make sense as the pretrained model was exposed to Wikipedia style text via the GPT-2-
OUTPUT dataset (Solaiman et al., 2019) and the ChatGPT revised TOEFL essays were
generated using prompts that explicitly request the model to sound more native (Liang
et al., 2023).

Furthermore, the pretrained model displayed 70 important functional components, 6
of which were correlated with both non-native English essays and AI-generated essays,
but not native English essays (colored red in Figure 24a).

During the first epoch, the model’s performance spiked significantly, achieving
nearly perfect F1 scores on the GPT-WIKIPEDIA-INTROS dataset and the AES-ASAP-
DETECT dataset with F1 scores of 0.997 and 0.993 respectively. However, it had a sharp
falloff on the TOEFL ESSAYS dataset, reaching an F1 score of 0.043. This change in
performance coincided with a sharp reduction in the number of important functional
components to only 16, all of which correlated significantly to an inability to distinguish
non-native English authored essays with AI generated essays (Figure 24b). This pattern
continued into epoch 2 with the one change that the number of important functional
components dramatically increased to 91 (Figure 24c).

The performance across subsequent epochs showed diverging trends between the
in-domain GPT-WIKIPEDIA-INTROS and the other two evaluation datasets. For the
GPT-WIKIPEDIA-INTROS dataset, there was a considerable decrease in performance
during epoch 3 to 0.679, but a steady increase was observed from epoch 4 on-wards,
reaching 0.724 by the termination of training. Contrarily, the performance on AES-
ASAP-DETECT and TOEFL ESSAYS datasets dropped to zero at epoch 3 and epoch
2 respectively. The model did not show any improvement for either dataset in the
following epochs. The number of important functional components increased to a
maximum of 98 at epoch 3 (Figure 24e) which steadily declined until the end of training
(Figure 24g).

9.5.2 Epoch-to-Epoch Behavior

During the initial phase of fine-tuning (Figure 24a-b), an higher density of correlations
was observed between lower variance-explaining functional components (towards the
top of the figure) of the pretrained model and the important functional components of
the fine-tuned model. Some of the lower variance-explaining functional components
correlate strongly with both non-native English essays and AI-generated essays, but
not native English essays, a correlation that exists in all of the important functional
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components in the model after one epoch of fine-tuning. These were further propagated
to the important functional components of the model at epoch 2, though the correlations
are stronger with between the important functional components of the model at epoch 1
and the lower-variance explaining functional components of the model at epoch 2.

Between the second and third epochs, there was a dramatic rearrangement of func-
tional components, visible by the fairly random patter of relatively weak correlations
between important functional components of the model at epochs 2 and 3 (Figure 24d).
The resulting important functional components share none of the highlighted red corre-
lations with the previous epoch.

From the third to the fourth epochs, an ‘X’ shaped region of high density of cor-
relations is visible in Figure 24f. This ’X’ connects components that explained a low
amount of variance to components that explain a high amount of variance across the
epochs. While this trend appears to weaken over time along with the general correlation
between important functional components in the epochs (Figure 24g), it continued for
the rest of the training.

9.6 Discussion
The results of our study provide valuable insights into the transformation of learned
functional components in a RoBERTa-based AI-writing detection model during fine-
tuning, shedding light on the origin and evolution of biases against non-native English
speakers. Firstly, the initial performance of the pretrained model varied significantly
across different evaluation datasets. This discrepancy, as discussed previously, can be
attributed to the exposure of the pretrained model to the relevant types of text. These
variations highlight the importance of creating a new dataset as a counterpoint to the
existing TOEFL ESSAYS dataset that has both the properties of being essays written
with varying degrees of writing skill and with human written text produced by native
English speakers.

During the fine-tuning process, we observed a change in the model’s performance
and a rapid and substantial change in its important functional components. In the first
epoch, the model experienced an improvement in performance on two of the datasets
but exhibited a sharp decline on the third. This change coincided with a reduction in
the number of important functional components. In addition, we observed correlations
between lower variance-explaining functional components of the pretrained model and
the important functional components of the fine-tuned model in this initial phase of
fine-tuning. These correlations were linked to biases against non-native English speakers
by being unable to differentiate them from AI-generated essays while having that ability
for essays written by native English speakers. These biases were propagated to the
important functional components of the model in subsequent epochs, indicating the
persistence and amplification of biases during fine-tuning. This results in a detriment
to the generalizable performance of the model, even while appearing to improve the
performance on out-of-domain dataset. Furthermore, with fine tuning these large
language models, this appears to occur very quickly in the fine tuning process.

Interestingly, the rearrangement of functional components while the model was
transitioning to a state of overfitting was observed between the second and third epochs.
This was characterized by weak correlations and an immediate drop-off of the biases
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functional components that were present in the previous epoch. This may suggests that
the model learned dataset artefacts present in the GPT-WIKIPEDIA-INTROS dataset that
were not present in either alternate datasets. This is corroborated by the sharp decline of
performance on the AES-ASAP-DETECT dataset in the same time-step.

Additionally, an ‘X’-shaped region of high density correlations between functional
components was identified clearly in the visualization presented in Figure 24 between
the third and fourth epochs and more faintly between the subsequent epochs. The ‘X’
shape emerges from high correlation between low-variance explaining components and
those explaining high variance. This is expected if we consider that the model is likely
making small hops around its local minimum as it is forced to continue training. The
re-odering of the functional components is likely a result of the training during the epoch
nudging the model to a different part of the loss landscape near the local minimum and
back in the next epoch. The weakening of the correlation between important functional
components during the late stages of over-fitting (Figure 24g) may be a result of this
occurring with functional components not considered important for a given epoch.

9.7 Conclusion
Throughout this work, we introduced a new AI-detection dataset tailored for student
writing, and leveraged it to provide an analysis of the dynamic nature of the functional
groups of neurons within a transformer based model during the fine-tuning process. This
provided insight into the model’s evolution through training and highlights the signifi-
cance of inherited components from pretrained weights in decision-making processes.

Because these inherited components from pretrained models can rapidly influence
down-stream fine-tuned models in ways that can appear helpful in someways while
being detrimental in others demonstrate the risk of only having a small number of
standard pretrained models that are used for the breadth of tasks for which NLP has
proved effective. Much like diverse groups of people bring together varying perspectives
to overcome their biases and solve complex problems, we need to avoid a machine
learning monoculture. By uncovering the transformation of learned components during
fine-tuning and tracking the origin and evolution of biases, another step is made toward
increased transparency, fairness, and critical evaluation of LLMs. Future research should
explore methods to mitigate these biases by improving the diversity of pretrained models,
identifying the functions of a model’s learned components, and taking into account the
consequences of the dynamics observed in the fine-tuning process.
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10 Practical Usage of Neural Pathways
The exploration of neural pathways in machine learning models is not just a theoretical
exercise and in this chapter we delve into the pragmatic aspects of pathway analysis.
Our focus is on equipping readers with both the knowledge and the tools to dissect and
comprehend the neural networks. This chapter is designed as a bridge connecting the
theories of neural pathways with their tangible application.

At the heart of this chapter is a detailed user guide for a tool designed specifically for
conducting a thorough pathways analysis. The tool, equipped with a graphical interface
and advanced analytical capabilities, simplifies the complex task of dissecting neural
networks, making it an invaluable asset for anyone in the field of machine learning and
potentially enabling even those new to the field to navigate the intricacies of a neural
pathways analysis with ease.

Furthermore, the chapter contains commentary on practical considerations when
performing a pathways analysis, including tips, best practices, and strategies to optimize
the analysis process, ensuring that readers can make the most out of their investigative
endeavors.

Lastly, the chapter includes a series of real-world instances where pathway analysis
has been successfully implemented. These case studies serve as exemplars of how the
method can be applied in various contexts, ranging from academic research to industry
applications. They not only illustrate the versatility and utility of pathway analysis but
also provide tangible evidence of its impact and effectiveness.

10.1 Neural Pathways Explorer Tool
The Pathways Explorer Tool7 is an instrument developed to facilitate the expeditious
and detailed examination of neural networks. It provides a platform for researchers
and practitioners to input attribute tables and neural network activations. Central to
this tool is the feature that allows for the extraction of neural pathways with tunable
levels of variance explained. This feature affords users the discretion to modulate
the depth of their analysis, ranging from a broader overview of neural patterns to
a more granular exploration of network behavior. Complementing this is the tool’s
graphical interface, which visualizes correlation between pathways and attributes. This
interface enhances the analytical process by simplifying the identification of complex
relationships. Additionally, the tool’s functionality extends to presenting exemplar data
instances for each identified pathway, coupled with their respective attribute values.
This capability is invaluable for contextualizing the pathways in practical scenarios and
performing qualitative analysis of the pathways.

In essence, the Pathways Explorer Tool is crafted to bridge the gap between theo-
retical neural network models and their practical analysis, catering to the community’s
need for a detailed and accessible examination tool. It is optimized for conducting swift
analyses on relatively modest-sized datasets and neural network models. Specifically,
it is most effective when applied to datasets comprising fewer than 10,000 instances
and models with less than 1,000 neurons. This scope ensures that the tool is sufficiently

7https://github.com/jfiacco/NeuralPathwaysEditor
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responsive, making it suitable for exploratory analysis and preliminary investigations in
both academic and applied settings.

This limitation in scalability, however, is an area of ongoing development, as ac-
knowledged in the future directions. In Section 11.3, we discuss the planned enhance-
ments aimed at expanding the tool’s capabilities to handle larger datasets and more
complex neural network architectures. The aspiration is to incrementally improve the
tool’s efficiency and adaptability, thereby extending its applicability to a broader range
of research scenarios and larger-scale applications.

The current version of the Pathways Explorer Tool, therefore, serves as a foun-
dational step towards more comprehensive analysis capabilities. It offers a valuable
resource for immediate, in-depth exploration of neural pathways within a defined scope,
while also laying the groundwork for future advancements in the domain of neural
network analysis.

10.2 User Guide
In Chapter 5, we presented the procedure for performing a neural pathways analysis
which is to be used as the procedure for performing a pathways analysis. In this section,
we provide a guide for using the graphical tool to perform an analysis via the graphical
user interface. This tool can be used to quickly analyze small to medium sized neural
networks where one has extracted the activations of the network and has a table of
attributes. This guide is structured to navigate users through the tool’s functionalities,
providing practical considerations for the four phases of the analysis process: choosing
attributes, determining the number of pathways, determining pathway correlations, and
performing a qualitative analysis.

In this initial phase, the focus is on selecting attributes that are potentially significant
for the model’s decision-making process. This selection is crucial as it influences the
subsequent analysis of neural pathways. Attributes can range from input features to
more abstract model-specific characteristics. The choice of attributes should be guided
by the specific objectives of the analysis and the theoretical underpinnings of the model.

The next phase involves setting a practical limit on the number of neural pathways
to be analyzed. The decision is a balance between computational feasibility and the
comprehensiveness of the analysis. A higher number of pathways might provide a more
detailed picture but at the cost of increased complexity.

In the main analysis phase, the tool helps to uncover how the identified pathways cor-
relate with the chosen attributes. This analysis is pivotal in understanding the interplay
between different components of the model. Correlation analysis can reveal insights
such as dependencies, redundancies, or unique contributions of specific pathways to the
model’s behavior.

The final phase involves a qualitative analysis, where the correlations from the
previous phases are interpreted and contextualized by projecting them onto the data.
This phase allows for a deeper understanding of the model, going beyond mere statistical
relationships. It involves examining the pathways in the context of the analysis data to
provide an intuition for the findings.

Throughout this guide, we will provide detailed walkthroughs, accompanied by
screenshots from the tool, to illustrate each step of the process. By the end of this guide,
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Figure 25: Example screenshot of the ATTRIBUTES tab of the Neural Pathways Explorer
Tool.

users will be equipped with a thorough understanding of how to leverage this tool to
analyze neural pathways in a range of models, leading to more informed interpretations
and potentially more robust model development.

10.2.1 Choosing Attributes

This section of the user guide provides instructions on how to load your analysis dataset
into the Pathways Explorer Tool and select appropriate attributes for your analysis. The
process involves importing a CSV file of attributes and considerations for choosing
relevant attributes.
Step 1 - Preparing Your CSV File: Before you begin, ensure that your CSV file is
properly formatted. Each row in the file should represent a distinct data instance in your
analysis dataset, and each column should correspond to either features of your model or
attributes that may be correlated with the neural pathways. It is important that this data
is clean and accurately represents the variables of interest for your analysis.
Step 2 - Loading the CSV File into the Tool:

1. Open the Pathways Analysis Tool: Launch the application and navigate to the
ATTRIBUTES tab (Figure 25).

2. Import the CSV File: Look for the option to ‘Select File’. Click on this option
and navigate to the location of your CSV file on your computer.

3. Select and Open the File: Choose the CSV file you prepared and open it. The tool
will process the file and load the data.
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Figure 26: Example screenshot of the EXTRACT tab of the Neural Pathways Explorer
Tool. In this case, too many pathways were extracted.

Step 3 - Confirm the Table of Attributes: Once the CSV file is loaded, the tool will
display the table of attributes. This table will show all the columns from your CSV file,
representing the features and attributes of your analysis dataset. Verify that this table is
correct.
Tip - Choosing Attributes: Choosing the right attributes is crucial as it determines the
perspective from which you will analyze the model. Attributes should be closely related
to the specific task your model is designed to perform and should ideally be independent
to provide a clear and unbiased view of the model’s behavior. As it is often difficult
to find attributes that are truly independent, performing an Independent Component
Analysis on the features can group them into maximally independent groups.

Following these steps will successfully load your analysis dataset into the Pathways
Explorer Tool and set the stage for a comprehensive analysis of neural pathways based
on the attributes relevant to your specific research or application scenario.

10.2.2 Determining the Number of Pathways

This section of the user guide explains how to extract neural pathways from neuron
activations using the Pathways Analysis Tool. The process involves loading neuron
activations from a JSON file and choosing the appropriate method and parameters for
pathway extraction.
Step 1 - Prepare Activation JSON File: The neuron activations should be in a JSON
file with the following format:

{"<NAME OF LAYER/NEURON SET>":
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Figure 27: Example screenshot of the EXTRACT tab of the Neural Pathways Explorer
Tool. In this case, the extraction parameters were tuned to provide a more reasonable
amount of pathways while maintaining a high amount of variance explained.

[[<ACTIVATIONS FOR DATA INSTANCE 0>], ...,
[<ACTIVATIONS FOR DATA INSTANCE N>]], ...}

Each key in the JSON object represents a layer or set of neurons, and the associated
value is a list of activation values for each data instance.
Step 2 - Loading Neuron Activations:

1. Navigate to the EXTRACT Tab: Look for a tab or section labeled EXTRACT. Click
on this tab to navigate to the pathway extraction section of the tool.

2. Load the JSON File: In the EXTRACT tab, find the option to ‘Select File’. Select
this option and navigate to your prepared JSON file.

3. Confirm the File Selection: Choose the JSON file and confirm to upload it. The
tool will then process and display the neuron activations.

Step 3 - Choosing the Pathway Extraction Method: Select the pathway extraction
method with the dropdown menu. The default method for pathway extraction is Factor
Analysis. An alternative option available is Principal Component Analysis (PCA).
Choose the method that best suits your analysis needs; factor analysis generally provides
better quality pathways, though PCA is often faster for larger datasets or models.
Step 4 - Setting the Target Percent of Variance:

1. Determine the Target Percent of Variance: Decide on the percentage of variance
that should be explained by the pathways. This is a crucial decision, as it affects
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Figure 28: Example screenshot of the PATHWAYS tab of the Neural Pathways Explorer
Tool after the ‘Analyze’ button has been clicked.

the complexity and quantity of the pathways extracted. A higher percentage
means less information loss but results in more complex and numerous pathways.

2. Input the Target Percent of Variance: In the tool, locate the option to set the target
percent of variance. Enter the value you have determined based on your analysis
needs.

Tip - Determining the Number of Pathways As a guideline, it is recommended to aim
for a percent variance that yields approximately one-tenth the number of pathways as
there are neurons in your model. This ratio is suggested as a starting point and can be
adjusted based on the specific requirements of your task.
Step 4 - Extracting Pathways: Once all settings are confirmed, proceed to extract
the pathways by clicking the ‘Extract Pathways’ button. The tool will process the
neuron activations using your specified method and variance target, resulting in a set of
neural pathways for further analysis. The number of pathways and each of their percent
variance explained will be displayed above the ‘Extract’ button (Figures 26 and 27). The
percent variance explained and the method for extraction can be changed after extraction,
but you must use the ‘Extract’ button to extract pathways with the new settings.

10.2.3 Determining Pathway Correlations

This section provides instructions on how to analyze the correlations between extracted
pathways and loaded attributes using the Pathways Analysis Tool. The process involves
selecting attributes for correlation computations, choosing a correlation method, and
interpreting the results through graphical representations.
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Step 1 - Navigating to the Pathways Tab:

1. Verify Attributes and Pathways: Before proceeding with this section, attributes
must be loaded and pathways must be extracted.

2. Locate the Pathways Tab: Look for a tab or section labeled PATHWAYS. Click on
this tab to access the correlation analysis section.

Step 2 - Selecting Attributes for Correlation:

1. Review the Attributes Table: In the top left section under the Pathways tab, you
will find a table populated with attributes and features from the ATTRIBUTES tab.

2. Toggle Attributes: Next to each attribute in the table, there is a checkbox. By tog-
gling the checkbox, you can include or exclude that attribute from the correlation
computations.

3. Confirm Your Selections: Ensure that checkboxes are checked for all attributes
you wish to analyze, and unchecked for those you want to exclude.

Step 3 - Choosing the Correlation Method: By default, the tool uses Pearson’s R
value for correlation. An alternative option available is Logistic Regression, where
correlations reflect the weights learned by a logistic regression model trained to predict
the attribute class with the pathways as inputs. For most cases, the default Pearson’s R
value is recommended. However, choose the method that aligns best with your analysis
needs.
Step 4 - Analyzing the Correlations:

1. Initiate the Analysis: Click on the ‘Analyze’ button. The tool will compute
correlations between each attribute and each pathway.

2. View the Results: The correlations will be displayed in bar graphs (Figure 28),
with each graph representing an attribute. Within each graph, individual bars
represent the correlation of a pathway with that attribute.

Tip - Interpreting the Bars: Bars that represent correlation above a certain threshold
are highlighted for convenience. In many practical scenarios, a Pearson’s correlation
greater than 0.3 is generally indicative of a pattern that is qualitatively discernible in
the data. The graphical representation of correlations provides a clear and intuitive
understanding of how different pathways relate to each attribute. The highlight feature
on the bars assists in quickly identifying significant correlations, streamlining the process
of pinpointing relevant pathways for further investigation.

10.2.4 Qualitative Analysis

This section of the user guide describes the process of conducting a qualitative analysis
on the pathways using the Pathways Analysis Tool. This analysis involves interacting
with the correlation bar graphs to explore the data instances most associated with specific
pathways and to understand the connection between these pathways and attributes.
Step 1 - Interacting with the Correlation Bar Graphs:
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Figure 29: Example screenshot of the PATHWAYS tab of the Neural Pathways Explorer
Tool after the correlation bar has been selected.

1. Locate the Correlation Bar Graphs: Ensure you are in the PATHWAYS tab where
the correlation bar graphs are displayed following your analysis.

2. Select a Pathway for Analysis: Click on one of the bars in the correlation bar
graphs. The bar you select represents a specific pathway and its correlation with
an attribute.

Upon clicking, the selected bar will be highlighted, indicating it is the focus of your
qualitative analysis (Figure 29).
Step 2 - Viewing Data Instances Related to the Selected Pathway:

1. Examine the Bottom Left Table: Once a bar is selected, look at the table located
in the bottom left of the window. This table will automatically populate with data
instances.

2. Review the Displayed Data: The data instances shown are those that most activate
the pathway represented by the clicked-on bar.

3. Note the Attribute Labels: Alongside each data instance, the label of the attribute
for that instance, corresponding to the attribute of the selected graph, will also be
displayed.

Tip - Customizing the Data Display:

1. Choose a Column from the Attribute Table: For tasks involving textual data, it is
recommended to display the raw text of the data instances. Select a column from
the attribute table that you wish to view via the dropdown menu.
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2. Adjust the Number of Displayed Instances: The tool allows you to change the
number of data instances shown in the table. Depending on the complexity of
the task and the strength of the correlation, you may need to adjust this number.
More instances can help in discerning patterns, especially in cases of weaker
correlations or more complex tasks.

Step 3 - Verifying Connections Between Pathways and Attributes: This qualitative
analysis provides an opportunity to validate the quantitative findings from the correlation
analysis and to gain a deeper, more nuanced understanding of the relationships within
the model.

1. Analyze the Data: Use the information in the table to observe and analyze how
the most activated data instances correlate with the selected pathway and its
associated attribute.

2. Confirm Relationships: This step allows you to quickly verify the connections
between specific pathways and attributes. Look for patterns or trends in the data
that support the correlation indicated by the bar graph.

10.3 Illustrative Use Cases
This section transitions catalogues some practical applications of the neural pathways
approach. We present three distinct instances where researchers, unaffiliated with the
tool’s design and implementation, have successfully utilized the pathways method to
advance their work. These cases are drawn from diverse fields, showcasing the versatility
and impact of the tool in real-world scenarios. Each use case not only exemplifies the
practical utility of the pathways method but also illustrates how it can be adapted to
address various challenges and objectives in the realm of artificial intelligence.

The first case delves into the field of AI education, where the tool was employed to
enhance the learning experience of students in understanding neural network models.
By providing a transparent view of neural pathways, the tool enabled educators to offer
a more intuitive and interactive approach to teaching complex AI concepts. The second
instance discusses its use in neural model debugging, highlighting how researchers
leveraged the tool to identify and rectify inefficiencies in model architectures. This
application underscores the tool’s diagnostic capabilities, crucial for optimizing model
performance. The final case focuses on bias detection in datasets, an increasingly
pertinent issue in AI ethics. Researchers used the pathways method to uncover and
address biases in training data, ensuring fairer and more equitable model outcomes.
Each of these cases provides valuable insights into the practical benefits and adaptability
of the pathways method across different areas of AI research and application.

In implementing these practical applications, our approach was deliberate and me-
thodical. We selected researchers who had a specific and relevant context for using the
neural pathways tool, ensuring that its application would be meaningful and challenging.
Guiding these researchers through the application process, we provided support and in-
sight into how the tool could be best utilized in their unique scenarios. This collaboration
was a two-way street; as they applied the neural pathways approach to their work, we
engaged in detailed discussions about their experiences and the conclusions they drew
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from using the tool. These interactions were invaluable, as they not only allowed us to
observe the tool’s application in diverse fields but also to gather a range of user feedback
and perspectives. From these engagements, we were able to extract key lessons and
insights. These ranged from understanding the tool’s versatility and user-friendliness in
different contexts, to identifying areas for improvement and enhancement. This process
was not just about validating the utility of the neural pathways approach but also about
learning from its application in real-world scenarios, thereby enriching its development
and refining its effectiveness for future users.

10.3.1 AI Education

The ongoing development of neural pathways as a teaching tool in AI education
represents a significant expansion upon the work established by Chao et al. (2023).
This curriculum module, called StoryQ, was originally designed for high school En-
glish/Language Arts classes and implemented through a web-based platform. It laid
the groundwork for integrating AI concepts into secondary education and is currently
being expanded to cover material in concurrent Social Studies and Math classes as
well. As students engage with tasks like intent recognition and sentiment analysis,
they gain first-hand experience with machine-learning language models. In its original
formulation, the curriculum focused on logistic regression as a relatively simple model
for students to understand. The ubiquity of neural networks and now generative models
has applied pressure to include neural network concepts into this curriculum despite
their complexity. And so, one part of the next phase of this educational design involves
integrating the neural pathways approach to deepen students’ comprehension of these
complex models.

The neural pathways method aims to create a more intuitive bridge between advanced
neural models and simpler logistic regression models. This approach is particularly
beneficial in making AI concepts accessible and relatable to high school students. By
visualizing the influence of input features on model outcomes, the pathways approach
provides a clear and interactive means of understanding how neural networks process
and interpret data. This visual mapping not only clarifies the mechanics of AI but also
enriches students’ perception of language as a multifaceted tool beyond simple com-
munication. The positive feedback from the initial StoryQ module has set a promising
precedent, and the integration of neural pathways analysis is poised to further enhance
the educational value of the program. This initiative continues to evolve with revisions
and further testing planned for Fall 2022.

In this next phase of educational design, the integration of the neural pathways
approach into the curriculum is not a one-sided process; it thrives on the collaborative
and iterative engagement between developers, educators, and students. This communi-
cation the curriculum designers has tailored and simplified the concepts of the neural
pathways tool to suit the educational needs of high school students. As the curriculum
gets tested in the field, educators can experiment with incorporating this tool into their
lessons, where their feedback and observations become crucial in refining its design and
functionality. Similarly, students’ interactions with the tool will offer direct insights
into how effectively the concepts are being communicated and comprehended. This
ongoing dialogue can be instrumental in evolving the tool to be more user-friendly and
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relevant to the curriculum. The process is dynamic, with each iteration informed by the
experiences and perspectives of both teachers and learners. This collaborative effort
not only ensures that the tool is pedagogically sound but also aligns it closely with the
educational objectives of the StoryQ module. As a result, the neural pathways method
is further adapted and refined, reflecting a deepening understanding of how to convey
complex AI concepts in an educational setting.

10.3.2 Model Debugging

In recent unpublished work done by Nourbakhsh (2024), researchers conducted a
detailed pathways analysis on LayoutLMv3 (Huang et al., 2022), using the FUNSD
dataset (Jaume et al., 2019) as a basis for examination. The FUNSD dataset, known
for its wide variety in document appearance and the complexity of form understanding
tasks it presents, offered an ideal setting for this analysis. The primary objective was
to ascertain how different modalities, particularly visual and spatial characteristics,
influenced the model’s decision-making processes. This involved a qualitative analysis
of pathway activations across various document samples, aiming to identify whether
documents with distinct features, such as a tabular structure, triggered different neural
pathways. The initial findings revealed intriguing patterns in pathway activations,
shedding light on how the model processes diverse document layouts.

Further deepening the analysis, clustering was performed on the pathways, drawing
random samples from each cluster to uncover potential similarities within these groups.
A standout observation was the clustering of documents based on textual density,
indicating that LayoutLMv3 tended to group denser pages together, as showcased on one
of the presentation slides. This clustering analysis was complemented by a comparative
study across different versions of the LayoutLM model (versions 1, 2, and 3) and the
basic RoBERTa embeddings, which lack multimodal information. The Adjusted Rand
Index (ARI) scores obtained in this comparison revealed a gradual increase in reliance
on multimodal features from LayoutLMv1 to v3. However, a critical insight was that
despite these advancements, the text modality still predominantly influenced the model’s
semantics across all versions. This imbalance led to a subsequent investigation into the
parameter norms of LayoutLMv2 and v3, revealing a significant number of dormant
parameters in v2. These findings not only highlighted areas for model optimization but
also underscored the nuanced role of different modalities in document understanding
models. Through this multifaceted pathways analysis, the researchers were able to
diagnose and pinpoint specific areas for improvement, demonstrating the tool’s utility in
neural model debugging and enhancement.

The research conducted by Nourbakhsh (2024) on LayoutLMv3 not only provided
insights into the model’s functioning but also exemplified a collaborative, iterative pro-
cess between the interpretability work and the neural model design. As the neural model
designers uncovered patterns and anomalies in the pathway activations, these findings
and limitations of the method were shared with the interpretability researchers, fostering
a dynamic dialogue. This exchange allowed the designers to gain a deeper perspective
on how their model was being interpreted and utilized in real-world scenarios. It also
provided them with valuable feedback on areas needing refinement, directly influenc-
ing subsequent iterations of the LayoutLM model. The work also revealed potential
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scalability issues that will be discussed in the Future Work section of Chapter 11. This
collaborative process ensured that the insights gained from the pathways analysis were
not just theoretical observations but were actively used to enhance the model’s design
and functionality. As a result, this ongoing interaction between the researchers and the
model designers became a critical component of the research, leading to more informed
and effective model enhancements.

10.3.3 Dataset Analysis

The qualitative analysis of datasets using the pathways method, as implemented by
Adamson (2023), offers a compelling illustration of how this approach can uncover
insights into dataset characteristics. Provided with extracted pathways a qualitative
analysis was performed, which sought to understand the functional significance of these
feature groups. One of the initial concerns raised was the apparent association of many
model pathways with demographic features. This observation posed potential ethical
concerns about the influence of demographic factors on model decisions.

By examining the data that was activating the pathways identified by the higher-level
analysis, it was revealed that what initially appeared as demographic bias was, in fact,
more attributable to topic-specific patterns linked to certain schools. This was a direct
result of the sampling approach used to create the dataset, which, while intending to
provide a de-biased sample, introduced a different form of potential bias. This discov-
ery exemplifies the importance of looking beyond surface-level data interpretations,
especially in models where complex feature interactions are at play. By employing the
pathways method, researchers and analysts can untangle intricate relationships within
the data, moving from a preliminary understanding of feature groupings to a more
profound comprehension of their practical implications. Such an approach is essential
not only for refining model accuracy but also for ensuring ethical and responsible AI
applications, particularly in areas where data sensitivity and integrity are paramount.

The qualitative analysis conducted by Adamson (2023) exemplifies the crucial
collaborative relationship between dataset creators and interpretability researchers in
the field of AI. In this instance, the interpretability method revealed a need to group
non-separable features, see Section 5.4. This insight was pivotal in providing a robust
interpretability tool that can handle the complex interactions within the dataset. Ad-
ditionally, for the dataset creators, the feedback provided a valuable perspective on
the unintended consequences of their sampling approach, highlighting areas where the
dataset might inadvertently introduce biases. This two-way street of communication and
collaboration led to a more comprehensive understanding of both the dataset’s structure
and the interpretability tool’s capabilities.

10.4 Conclusion
This chapter, encompassing both the user guide for the Pathways Explorer Tool and the
illustrative use cases, underscores the versatility and impact of the pathways method
in diverse AI applications. From enhancing AI education and facilitating neural model
debugging to ensuring ethical dataset analysis, the tool demonstrates its capability to
render complex neural network behaviors into understandable and actionable insights.
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By bridging the gap between theoretical AI concepts and practical implementations,
the pathways method empowers users across various domains to delve deeper into the
workings of AI models. As we have seen through the examples of StoryQ in education,
LayoutLMv3 in model debugging, and automated essay scroing in dataset analysis, the
pathways approach is not just a tool for analysis but a catalyst for innovation, ethical
considerations, and advanced learning in the ever-evolving field of artificial intelligence.
This chapter, therefore, serves as both a guide and an inspiration for future explorations
and applications of neural pathway analysis.
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11 Conclusion and Future Directions

11.1 On Changes in Neural Model Interpretablity Over the Lifetime
of this Work

The field of neural network interpretability emerged to seek methods to explain model
decisions, unveil representations within hidden layers, quantify uncertainty, and enable
auditing by domain experts. Since the work that led to this thesis began, there has
been monumental progress in the advancement of deep learning and neural network
interpretability. In this work we have discussed a method for interpretability that focuses
on a specific subset of the body of work, specifically in the post-hoc analysis of models
that range from simple feedforward neural networks to transformer models. We have
covered much of the work that has served as the foundation for this thesis in Chapter 2.
However, concurrent to the work done in this thesis, researchers have introduced new
techniques to elucidate model mechanics, evaluate explanation quality, expand scope
to new data types, and embed trust and accountability within new models. The advent
of large language models has also presented new challenges around decoding their
knowledge and scaling explanations appropriately. This section chronicles some of
the salient technical advances, philosophical shifts, and changing priorities within the
interpretability field over the recent years. We survey rising approaches extracting
post-hoc explanations, inherent techniques exposing model representations, metrics
gauging quality, transition towards real-world impact, and outlook for demystifying
ever-larger neural networks. In terms of the taxonomy from Chapter 2, a migration
to a higher abstraction interpretability space is occurring as a response to larger and
larger models being produced and deployed along with expanding and codifying the
evaluation of such models.

The landscape of neural network interpretability research has evolved rapidly. Early
interpretability methods focused primarily on assigning importance scores to input
features (e.g. pixels for images or words for text). Approaches such as saliency maps,
gradient-based localization, and intrinsic influence functions proliferated from 2015 to
2018 (Simonyan et al., 2013; ?). However, these methods had several critical limitations
- they failed to explain model reasoning, focused only on inputs, and were susceptible to
adversarial attacks (Ghorbani et al., 2019).

The rigor of evaluation for explanation methods has matured. Properties such as
robustness, fidelity, stability, and ground truth alignment are now quantified. Benchmark
datasets specifically for testing interpretations have been released across vision, text,
and tabular data (Jacovi et al., 2021). And visualization tools for interactive explanation
analysis continue advancing (Ghani et al., 2023). Overall, recent advances now enable
deeper insight into model reasoning, behavior across data distributions, failure modes,
and alignment with human conceptualizations.

Alongside technical advances, the philosophical foundations and research priorities
of the interpretability field have matured. As such, new lines of critique and analysis
have developed. Researchers examine the assumptions, efficacy, and real-world impacts
of explanations through an interdisciplinary lens spanning social science, psychology,
and ethics (Miller, 2019). Trade-offs are weighed between accuracy, efficiency, and
transparency. And interactive interfaces now enable non-technical stakeholders to
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scrutinize explanations as well. Moving forward, calls continue growing to shift some
research efforts away from technical novelty towards applications benefitting society
- improving medicine, governance, criminal justice, accessibility, and more (Jacovi
and Goldberg, 2020). This philosophical strand strives to unify scientific rigor with
ethical responsibility - illuminating the true capacities and limitations of advanced AI
through the language of detailed, personalized explanations. The next wave of neural
network transparency will demand even greater integration of technical, social, and
moral considerations.

Particularly, the next wave of neural network transparency will need to handle the
advent of large pre-trained language models (many of which are based on a transformer
architecture). These models have dramatically reshaped the neural network interpretabil-
ity field over the past few years. Models such as BERT, GPT-3+, and PaLM have
demonstrated impressive performance on language tasks once considered exception-
ally human-like. However, their sheer scale - with hundreds of billions of parameters
- poses massive challenges for explanation techniques. Attention layers now play a
central role in unraveling their behavior, though, despite their name are an unreliable
indicator for what the model is prioritizing (Grimsley et al., 2020; Chefer et al., 2021).
Providing faithful explanations efficient enough to scale appropriately and quantifying
how well these interpretations generalize across tasks remains an open problem. Re-
searchers are only beginning to unpack the reasoning behind decisions in models like
these. Promising directions include grounded LLM based information retrieval (Zhu
et al., 2023), adversarial probing of knowledge representations(Kumar et al., 2023), and
designing simplified performance-matched Networks amenable to explanation (Zheng
et al., 2022). What representations these models learn, how they employ contextual
knowledge, and whether their decision-making aligns with human rationales remain
active debates within both the ML fairness and interpretability communities.

This raises the question, where does the neural pathways approach belong amongst
this change in the field? Despite being founded on pre-LLM interpretability considera-
tions, it can serve as an essential foundational layer that complements more recent and
abstract interpretability techniques, such as those utilizing LLMs for model explanations.
By providing empirical insights into the subset of the neural networks implicated in
model decisions, especially in complex models like BERT or GPT-3+, it can anchor
the narrative-like explanations generated by LLMs in concrete data-driven analysis.
This approach ensures that high-level, human-readable interpretations are rooted in the
actual computational behavior of the model, thus enhancing the accuracy and credibility
of interpretations in AI. The integration of the neural pathways method with abstract
interpretability techniques represents a balanced approach, combining in-depth technical
analysis with accessible explanations.

In review, neural network interpretability research has rapidly evolved in recent
years - both technically and philosophically. Explanation methods now provide mul-
tilayered insights into model mechanics and knowledge representations beyond mere
input attribution. Rigor of evaluation continues improving to align with enhanced aims
instilling trust, auditing systems, and ensuring fairness. The rise of transformers has
unlocked unprecedented predictive power yet poses new challenges for explanation
techniques to scale appropriately and unpack these massive models’ reasoning, and
the neural pathways approach presented in this thesis fills a specific niche between the
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abstract concepts learned by neural models and the inscrutable neurons.

11.2 Summary of Contributions
The contributions of this thesis can be summarized as six specific items, listed below
with the chapters that principally address each contribution.

1. Method for Neural Model Interpretability at the Subtask Level (Chapters 3,
4, & 5):
The core contribution for this thesis is the introduction and validation of the neural
pathways interpretability approach. Through this method, we show that we can
analyze a neural model by examining groups of correlated neurons instead of
individual neurons. This allows us to align the activations within a neural model
with external knowledge that is too abstract to be represented by a single neuron
activation.

2. Framework for Aligning Learned Functions to Causal Structures (Chapters 4
& 5):
The second contribution of this work is an extension of the first where we show
the we can align a limited type of causal information with pathways that a neural
model has learned. We developed a metric that can summarize how closely
aligned a neural model is with a causal model. This metric is conceptually based
on precision and recall adapted for the alignment between pathways and casual
graphs.

3. Method for Comparing and Aligning Functional Components Across Models
(Chapters 3 & 9):
We also contribute a extension of the neural pathways approach to align and
compare learned functions between different models. This can include models
of differing architectures or training procedures. This can allow for mapping the
evolution of learned features and functions throughout the training process.

4. Scaffolding Neural Model Learning with Functional Components (Chap-
ter 7):
Applying the neural pathways approach to the neural model design process, we
find that we can use fixed high level pathways as auxiliary features for a rhetorical
structure parser that allows the parser to more easily handle student writing.
Student writing is a difficult domain for discourse parsing as there is a wide
variance of author writing ability and essay structure within the data.

5. Employing Functional Component Transferability Through Fine-Tuning
(Chapter 8):
We demonstrate the ability of the neural pathways approach for error analysis by
analyzing the pathways correlated with the error cases for detecting transactivity
in forum posts by Masters students. This is a different domain than was used to
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train the original model for detecting transactivity. We further discuss the use of
neural pathways approach to understand how the Recognizing Textual Entailment
pretraining task informs the transactivity model providing insight on the specific
reasons why there is such a dramatic difference in performance of the transactivity
detection algorithm depending on the domain.

6. Method to Describe Emergence of Problematic Features During the Fine-
Tuning of Neural Models (Chapter 9):
Our last contribution explores how the neural pathways approach can be used
to facilitate an analysis of the fine-tuning process for neural models. The target
domain for this study coincides with a wide initiative in the field of interpretablity
to improve fairness by identifying and reducing harmful bias. We show that neural
pathways can be used effectively to determine how sensitive information may be
reinforced during fine-tuning. This extends the concept of the meta-pathways
approach beyond model comparison to mapping training process of a model over
time.

11.3 Future Directions
Grounded in the comprehensive insights garnered from the research presented in the
preceding chapters, this portion of the thesis seeks to illuminate potential avenues of
exploration, challenges yet to be addressed, and novel opportunities that may arise in
the both the near the far term. We postulate on the broader implications of this line
of research and consider the wider impact. Furthermore, we posit the transformative
potential of neural pathway interpretability tools, consider the ethical and societal
ramifications of our innovations, and envisage a future where AI systems harmoniously
collaborate with humans in two way dialogue.

11.3.1 Expanding on Neural Pathways

Domain Expansion (Near-Term): The exploration of neural pathways has been pri-
marily situated within the context of educational technologies. This focus, while rich
and instructive, merely represents the tip of the iceberg. When we consider the vast
landscape of modern sectors, from the intricate diagnostics in healthcare to the nuanced
decision-making in finance, the potential applications of neural pathway research can be
multifarious. For instance, within the healthcare realm, understanding neural pathways
can pave the way for transparent diagnostic AI tools, ensuring that medical profession-
als are equipped with both the predictions and the rationale behind them. Similarly,
in the world of finance, deciphering the decision-making process of neural models
could bolster trust in algorithmic trading or less structural bias in credit risk assessment.
The overarching objective, across all these domains, remains consistent: to demystify
the intricacies of neural models, thereby fostering transparency, trust, and widespread
adoption.
Neural Pathways in Transformers and Large Language Models (Near-Term): The
ascendance of transformer-based large language model architectures, epitomized by
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models such as GPT-4 and LLAMA, have redefined the contours of state-of-the-art
machine learning. These architectures, characterized by their ability to capture intricate
contextual relationships, have become the bedrock of numerous applications. Yet, as
our research indicates, a deeper probe into the application of neural pathways within
transformers remains a largely uncharted territory. The extant methodologies have
predominantly focused on the final embeddings, however, to truly harness the power of
transformers, it would be worthwhile to explore the application of the neural pathways
approach to the sequence-based structure inherent in their design. By doing so, we may
better understand the computations and dependencies that underpin their predictions,
thus offering a more comprehensive and granular understanding of their operations.
Pathway Pruning (Long-Term): The complexity of neural models enables them to cap-
ture nuanced patterns, but it also poses challenges in terms of computational efficiency
and interpretability. As our understanding of neural pathways matures, a tantalizing
prospect emerges: the possibility of pathway pruning. Pathway pruning is the process of
identifying and excising redundant or non-essential pathways (or even fairness related
problematic pathways) so that neural models that are leaner yet equally potent can
be sculpted. Such pruning not only could result in significant computational savings
but also aligns with the broader ethos of parsimony in computational modeling, an
emerging concern tied to the environmental sustainability of ultra-large models. A
well-pruned model, stripped of extraneous elements, can offer clearer insights into its
decision-making process, marrying efficiency with transparency.

11.3.2 Enhancing Neural Pathway Interpretability Tools

User-Friendly Visualization Tools (Near-Term): Neural pathways, like any inter-
pretability method, poses an inevitable challenge: accessibility to the those domain
experts without a background in machine learning. To democratize the insights obtained
from our research and to truly foster a broad-based understanding, there is an imperative
need for intuitive visualization tools. Such tools serve as bridges, translating the abstract
mathematical intricacies into tangible, comprehensible visuals that intuitively convey
the logic behind a model’s decision-making. Our preliminary endeavors8 have resulted
in the early stages of such a tool. However, as the domain of neural pathways continues
to evolve and as we glean newer insights into their application, there is an undeniable
need to iteratively refine and expand the visualization repertoire. Ultimately, the goal is
to cultivate a toolset that evolves in tandem with the field, ensuring that the revelations
of neural pathways remain accessible to all.
Automated Neural Pathway Analysis (Long-Term): In an age where rapid iteration
is not just a luxury but a necessity, the neural pathways method, while a tool that can
expedite and streamline its analytical processes, beckons for a system of automated
neural pathway analysis. Such a system could autonomously identify and elucidate
dominant neural pathways for a diverse array of tasks. Beyond mere identification, the
true potency of this automation lies in its potential to offer hypotheses for reasonable
explanatory structures that can be aligned with the internal reasoning of a neural model.

8https://github.com/jfiacco/NeuralPathwaysEditor
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11.3.3 Ethical and Societal Implications

Bias Detection and Mitigation (Near-Term): The proliferation of machine learning
models in pivotal societal sectors, such as judicial and hiring mechanisms, accentuates
the necessity to proactively discern and rectify biases. The inherent opacity of these
models can often cloak deeply ingrained biases, making them inadvertent instruments
of systemic prejudices; this is a known problem. However, with the lens of neural
pathways, we possess an additional vantage point to dissect and diagnose these biases at
their source. By understanding the specific pathways that culminate in biased outcomes,
we may be able to orchestrate targeted interventions, recalibrating these pathways
towards fairness. This not only ensures that our algorithms serve as enablers of equity
but also underscores the profound responsibility we hold as stewards of these potent
technological advancements.
Ethics in AI Curriculum (Long-Term): As the realm of artificial intelligence continues
to unfold and integrate into our daily lives, it is vital that the next generation is introduced
to both its functions and limitations. Introducing students to the underlying principles
of neural networks and machine learning is a critical goal for technological literacy.
This foundational knowledge, coupled with real-world examples, can foster a balanced
perspective, instilling both an understanding of the capabilities of AI and a healthy
skepticism towards its limitations. By making these topics accessible and engaging for
younger minds, we pave the way for a future population that not only benefits from
AI-driven advancements but also critically engages with them.

11.3.4 Collaborative Scientific Progress with AI Systems

Human-AI Academic Dialogue (Near-Term): The intersection of human domain ex-
pertise and the computational abilities of neural networks suggests a vibrant academic
discourse, not as separate entities but as co-contributors to a shared body of knowledge.
Human researchers, equipped with a nuanced understanding of specific domains, can
impart this knowledge to guide and refine machine learning algorithms. Additionally,
as these algorithms process vast datasets, they can unearth patterns and insights previ-
ously imperceptible to human analysis. Through neural pathways, we may be able to
recover these insights and such revelations can, in turn, augment the prevailing domain
knowledge, fostering a symbiotic loop. This iterative exchange signifies a paradigm
where humans and AI partake in a dynamic academic dialogue, advancing the frontier
of knowledge.
Causal Inference in Diverse AI Domains (Near-Term): The potential for ideas from
causal inference to augment the neural pathways approach extends beyond the work
performed for this thesis. The infusion of causal methodologies into neural pathways
presents a transformative avenue for decoding the complexities of neural network
architectures. Instead of merely mapping relationships and associations between the
learned functions, the causal perspective can allow us to ask questions about the causal
chain of functions that the network uses to the transform its input into its output. By
doing so, we transition from a surface-level understanding to an in-depth comprehension.
A deep dive into the causal structures within neural networks holds the promise of
enhancing their interpretability manifold, ultimately leading to better interpretability
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methods.

11.4 Final Remarks
Throughout this dissertation, we have explored the concept of neural pathways as a
means to improve the interpretability of neural network models. This approach has
been applied across various applications, highlighting its potential in making complex
models more transparent and understandable, especially for users who are not experts
in machine learning. By focusing on the functional components of neural models, we
have provided a new lens through which these systems can be examined and understood.
However, it’s important to recognize that this is an initial step in a much larger journey
towards fully demystifying neural networks.

Looking ahead, the ambition is to further refine and expand the neural pathways
approach. The goal is to make it more adaptable and applicable to a wider range
of neural network architectures, including the increasingly complex large pre-trained
models. We hope this work will contribute to the broader effort of making AI systems
more transparent and accountable, not only for researchers but also for the general
public who interact with these systems in their daily lives. Ultimately, the aspiration is
for these efforts to lead to AI systems that are not only powerful and efficient but also
trustworthy and understandable, aligning with ethical standards and societal needs.
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Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better
understanding of gradient-based attribution methods for deep neural networks. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30-May 3, 2018, Conference Track Proceedings. OpenReview.
net, 2018.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Gradient-based
attribution methods. Explainable AI: Interpreting, explaining and visualizing deep
learning, pages 169–191, 2019.

Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using python.
In Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer,
2015.
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acodea framework: Developing segmentation and classification schemes for fully
automatic analysis of online discussions. International journal of computer-supported
collaborative learning, 7(2):285–305, 2012.

Tsendsuren Munkhdalai and Hong Yu. Neural tree indexers for text understanding.
arXiv preprint arXiv:1607.04492, 2016.

Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham
Neubig. Stress test evaluation for natural language inference. In Proceedings of the
27th International Conference on Computational Linguistics, pages 2340–2353, Santa
Fe, New Mexico, USA, August 2018a. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/C18-1198.

153



Aakanksha Naik, Abhilasha Ravichander, Norman Sadeh, Carolyn Rose, and Graham
Neubig. Stress test evaluation for natural language inference. In Proceedings of
the 27th International Conference on Computational Linguistics, pages 2340–2353,
2018b.

Matti Nelimarkka and Arto Vihavainen. Alumni & tenured participants in moocs:
Analysis of two years of mooc discussion channel activity. In Proceedings of the
Second (2015) ACM Conference on Learning@ Scale, pages 85–93. ACM, 2015.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,
Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul
Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980, 2017a.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar,
Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. Dynet: The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980, 2017b.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.
Synthesizing the preferred inputs for neurons in neural networks via deep generator
networks. Advances in neural information processing systems, 29, 2016a.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncov-
ering the different types of features learned by each neuron in deep neural networks.
arXiv preprint arXiv:1602.03616, 2016b.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug
& play generative networks: Conditional iterative generation of images in latent space.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4467–4477, 2017.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

Ian E Nielsen, Dimah Dera, Ghulam Rasool, Ravi P Ramachandran, and Nidhal Carla
Bouaynaya. Robust explainability: A tutorial on gradient-based attribution methods
for deep neural networks. IEEE Signal Processing Magazine, 39(4):73–84, 2022.

Timothy Niven and Hung-Yu Kao. Probing neural network comprehension of natural
language arguments. arXiv preprint arXiv:1907.07355, 2019.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, et al. Universal dependencies v1: A multilingual treebank collection. In
Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, 2016.

154



Armineh Nourbakhsh, Jan 2024.

Tuomas Oikarinen and Tsui-Wei Weng. Clip-dissect: Automatic description of neuron
representations in deep vision networks. In The Eleventh International Conference
on Learning Representations, 2022.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,
2(11):e7, 2017.

OpenAI. Gpt-2 output dataset, 2021. URL https://github.com/openai/
gpt-2-output-dataset. Accessed: 2023-06-1.

OpenAI. ChatGPT. https://chat.openai.com/, 2022. Accessed: 2023-6-1.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744, 2022.

Martha Palmer, Daniel Gildea, and Nianwen Xue. Semantic role labeling. Synthesis
Lectures on Human Language Technologies, 3(1):1–103, 2010.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment
categorization with respect to rating scales. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL’05), pages 115–124,
Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. doi:
10.3115/1219840.1219855. URL https://www.aclweb.org/anthology/
P05-1015.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classifi-
cation using machine learning techniques. In Proceedings of the ACL-02 conference
on Empirical methods in natural language processing-Volume 10, pages 79–86.
Association for Computational Linguistics, 2002.
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Tilman Räuker, Anson Ho, Stephen Casper, and Dylan Hadfield-Menell. Toward
transparent ai: A survey on interpreting the inner structures of deep neural networks.
In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML),
pages 464–483. IEEE, 2023.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan D Cotterell. Linear
adversarial concept erasure. In International Conference on Machine Learning, pages
18400–18421. PMLR, 2022.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam
Pearce, and Been Kim. Visualizing and measuring the geometry of bert. Advances in
Neural Information Processing Systems, 32, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–
1144. ACM, 2016.

Willy E Rice. Race, gender, redlining, and the discriminatory access to loans, credit,
and insurance: An historical and empirical analysis of consumers who sued lenders
and insurers in federal and state courts, 1950-1995. San Diego L. Rev., 33:583, 1996.

156



Andrea Romei and Salvatore Ruggieri. A multidisciplinary survey on discrimination
analysis. The Knowledge Engineering Review, 29(5):582–638, 2014.
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